
Author's Accepted Manuscript

Effect of TGO thickness on the Thermal Barrier Coatings Life under Thermal Shock and Thermal Cycle Loading

Kaveh Torkashvand, Esmaeil Poursaeidi, Maryam Mohammadi

www.elsevier.com/locate/ceri

PII: S0272-8842(18)30450-4

DOI: https://doi.org/10.1016/j.ceramint.2018.02.140

Reference: CERI17542

To appear in: Ceramics International

Received date: 17 December 2017 Revised date: 15 February 2018 Accepted date: 15 February 2018

Cite this article as: Kaveh Torkashvand, Esmaeil Poursaeidi and Maryam Mohammadi, Effect of TGO thickness on the Thermal Barrier Coatings Life under Thermal Shock and Thermal Cycle Loading, *Ceramics International*, https://doi.org/10.1016/j.ceramint.2018.02.140

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCR

Effect of TGO thickness on the Thermal Barrier Coatings Life

under Thermal Shock and Thermal Cycle Loading

Kaveh Torkashvand^a, Esmaeil Poursaeidi^{a,*}, Maryam Mohammadi^a

^aMechanical Engineering Department, Faculty of Engineering, University of Zanjan, Iran

Abstract

Effect of thermally grown oxide (TGO) thickness on thermal shock resistance of thermal

barrier coatings (TBCs) and also their behavior under a cyclic loading (including aging at

maximum temperature) was evaluated experimentally. In order to form different thicknesses

of TGO, coated samples experience isothermal loading at 1070 °C for various periods of

times. Heat-treated samples were heated to 1000 °C and cooled down rapidly in water from

the substrate side using a mechanical fixture. The life of samples was investigated as a

function of TGO thickness. Furthermore, by performing an experiment the simultaneous

effect of the TGO growth and thermal expansion mismatch— on the failure of thermal barrier

coatings was evaluated. The results demonstrated that the presence of TGO with a thickness

of 2 to 3 micrometers has a positive effect on the resistance against thermal shock.

Keywords: Thermal shock; Thermal cycling; TGO thickness; Thermal barrier coating

1. Introduction

The typical structure of thermal barrier coatings consists of four layers with each layer

* Corresponding author.

Tel.: +98 91 22133496; fax: +98 26 34467231; E-mail addresses: epsaeidi@znu.ac.ir (E. Poursaeidi)

1

Download English Version:

https://daneshyari.com/en/article/7887747

Download Persian Version:

https://daneshyari.com/article/7887747

<u>Daneshyari.com</u>