
## Author's Accepted Manuscript

Influences of hBN content and test mode on dry sliding tribological characteristics of B<sub>4</sub>C-hBN ceramics against bearing steel

Xiuqing Li, Yimin Gao, Liancheng Song, Qingxia Yang, Shizhong Wei, Long You, Yucheng Zhou, Guoshang Zhang, Liujie Xu, Bin Yang



ww.elsevier.com/locate/ceri

PII: S0272-8842(18)30051-8

DOI: https://doi.org/10.1016/j.ceramint.2018.01.039

Reference: **CERI17171** 

To appear in: Ceramics International

Received date: 1 December 2017 Revised date: 3 January 2018 Accepted date: 6 January 2018

Cite this article as: Xiuqing Li, Yimin Gao, Liancheng Song, Qingxia Yang, Shizhong Wei, Long You, Yucheng Zhou, Guoshang Zhang, Liujie Xu and Bin Yang, Influences of hBN content and test mode on dry sliding tribological characteristics of B<sub>4</sub>C-hBN ceramics against bearing steel, Ceramics International, https://doi.org/10.1016/j.ceramint.2018.01.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **ACCEPTED MANUSCRIPT**

Influences of hBN content and test mode on dry sliding tribological

characteristics of B<sub>4</sub>C-hBN ceramics against bearing steel

Xiuqing Li <sup>a, \*</sup>, Yimin Gao <sup>b</sup>, Liancheng Song <sup>b</sup>, Qingxia Yang <sup>c</sup>, Shizhong Wei <sup>a, \*</sup>,

Long You <sup>a</sup>, Yucheng Zhou <sup>a</sup>, Guoshang Zhang <sup>a</sup>, Liujie Xu <sup>a</sup>, Bin Yang <sup>a</sup>

<sup>a</sup> Engineering Research Center of Tribology and Material Protection of Ministry of Education, Henan University of Science and Technology, Luoyang 471023, China

<sup>b</sup> State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China

<sup>c</sup> School of Vehicle & Transportation Engineering, Henan University of Science and Technology, Luoyang 471023, China

Abstract: The dry sliding tribological characteristics of B<sub>4</sub>C-hBN ceramics with different contents of hBN against GCr15 bearing steel under two different test modes (upper disc on bottom pin test mode and upper pin on bottom disc test mode) have been evaluated using a pin-on-disc friction and wear tester. The experimental results show that, with increasing hBN content, the dry sliding tribological characteristics of B<sub>4</sub>C-hBN/GCr15 bearing steel pairs have different variation rules under two different test modes. Under upper disc on bottom pin test mode, with increasing hBN content, the friction coefficients of B<sub>4</sub>C-hBN/GCr15 bearing steel pairs decrease firstly and increase subsequently; however, under upper pin on bottom disc test mode, the friction coefficients of B<sub>4</sub>C-hBN/GCr15 bearing steel pairs increase continuously with increasing hBN content. In this paper, the possible reasons for these interesting results are most deeply discussed.

Keywords: Ceramics; Friction; Borides; Steel

\* Correspondence to: Engineering Research Center of Tribology and Material Protection of Ministry of Education, Henan University of Science and Technology, Luoyang 471023, China. Tel./Fax: +86-379-64270020. *E-mail address:* li\_xq@sina.cn.

## Download English Version:

## https://daneshyari.com/en/article/7887854

Download Persian Version:

https://daneshyari.com/article/7887854

<u>Daneshyari.com</u>