FISEVIER

Ceramics International

Rice spike-like $g-C_3N_4/TiO_2$ heterojunctions with tight-binding interface by using sodium titanate ultralong nanotube as precursor and template

Minquan Sun^a, Shuling Shen^{a,b,*}, Zhujun Wu^a, Zhihong Tang^{a,b}, Jiaping Shen^a, Junhe Yang^{a,b}

^a School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
^b Shanghai Innovation Institute for Materials, Shanghai 200093, China

ARTICLE INFO

Keywords: g-C₃N₄/TiO₂ Nanowire heterojunctions Tight-binding interface Visible-light photocatalysis

ABSTRACT

A novel rice spike-like g- C_3N_4/TiO_2 nanowire heterojunctions are fabricated by hydrothermal treating $Na_2Ti_3O_7$ ultralong nanotubes in the presence of g- C_3N_4 . The presence of g- C_3N_4 promotes the hydrolysis of $Na_2Ti_3O_7$ ultralong nanotubes. The partially replaced O of TiO₂ by N from g- C_3N_4 leads to the formation of a tight-binding interface between one dimensional TiO₂ and two dimensional g- C_3N_4 , which is crucial for fast and effective transfer of photogenerated electrons in heterostructured photocatalysts. As a result, the g- C_3N_4/TiO_2 nanowire heterojunctions exhibit excellent visible-light photocatalytic activity. The kinetic constant (k) of g- C_3N_4/TiO_2 (0.024 min⁻¹) for degradation of methylene blue under visible light irradiation is 1.85 and 4 times than that of pure g- C_3N_4 and P25, respectively.

1. Introduction

Photocatalytic technology has been considered as an ideal green technology for solving energy crisis and environmental pollution [1,2]. As conventional semiconductor photocatalyst, TiO₂ has been extensively studied because of its high chemical stability, non-toxicity, low cost and suitable reduction potential for redox reaction and so on [3,4]. But only UV light ($\lambda \leq 387.5$ nm, ~ 4% of the solar spectrum) can excite TiO₂ because of its large band gap of 3.2 eV [5–7]. Meanwhile, high recombination rate of photoinduced holes and electrons results in poor quantum efficiency for TiO₂ photocatalyst. Therefore, the key targets are enhancing its visible-light response and improving the lifetimes of its charge carriers. In order to achieve these goals, various TiO₂-based heterojunctions have been constructed based on energy band engineering [8] to extend the visible light response and restrain the recombination of photoinduced electrons and holes [9–11].

In the past few years, graphitic carbon nitride (g-C₃N₄) with suitable band gap (2.7 eV), cheap precursors and simple synthetic routes have been studied as the most promising visible light-driven photocatalyst [12–14]. Besides, with a soft lamellar polymer structure, g-C₃N₄ can be easily wrapped in other complex surface [15]. By the near coincidence site lattice (NCSL) theory [16], the coincidence site density of g-C₃N₄ or TiO₂ component, which indicates that g-C₃N₄ and TiO₂ are more conducive to form stable heterojunctions. Furthermore, the build-in electric field at the interface of coupled g-C₃N₄ and TiO₂ can not only improve the separation rate of photogenerated electrons and holes but also extend visible light response of TiO₂. At present, g-C₃N₄/TiO₂ heterojunctions are generally synthesized by direct mixing precursor powders of g-C₃N₄ and TiO₂ or impregnating TiO₂ in g-C₃N₄ precursor and then calcination [15,17-20]. Miranda et al. [17], synthesized g-C₃N₄/TiO₂ composites by impregnating g-C₃N₄ and TiO₂ powder in methanol. They proposed that the morphology of TiO₂ in g-C₃N₄/TiO₂ composites significantly affected the degradation of isoniazid. Zhao et al. [18], prepared g-C₃N₄/TiO₂ photocatalyst by annealing the mixture of g-C₃N₄ powder and titanium tetrachloride. In the product, TiO₂ nanoparticles dispersed on the surface of g-C₃N₄ sheet with a 0D interface. For g-C₃N₄/TiO₂ heterojunctions, large contact interface and strong coupling of components are still aspired. Herein, we report the synthesis of 1D rice spike-like g-C₃N₄/TiO₂ nanowire heterojunctions using Na₂Ti₃O₇ ultralong nanotubes as TiO2 precursor and template through a simple hydrothermal method. The formation mechanism of 1D rice spike-like g-C₃N₄/TiO₂ nanowires was proposed according to a series of experiments. The photocatalytic efficiency and stability of g-C₃N₄/TiO₂ nanowires heterojunctions were evaluated through the degradation of methylene blue (MB) under visible light irradiation. A possible mechanism to explain enhanced photocatalytic activity was finally proposed. The obtained rice spike-like g-C₃N₄/TiO₂ nanowire heterojunctions with high visible light response and low carrier recombination rate will be widely used in environmental purification, solar cell, fluorescence sensor, etc.

https://doi.org/10.1016/j.ceramint.2018.01.257 Received 5 January 2018; Received in revised form 29 January 2018; Accepted 30 January 2018 Available online 02 February 2018

0272-8842/ © 2018 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

^{*} Corresponding author at: School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. *E-mail addresses:* slshen@usst.edu.cn (S. Shen), jhyang@usst.edu.cn (J. Yang).

2. Experimental section

2.1. Materials

P25 power was purchased from Deguassa Co. Ltd, Germany. Ethanol (CH₃CH₂OH, \geq 95%) was purchased from Aladdin Reagent Company, China. Hydrochloric acid (HCl, 37%), sodium hydroxide (NaOH, \geq 96%) and dicyandiamide (C₂H₄N₄, \geq 98%), were obtained from Sinopharm Chemical Reagent Co. Ltd. All the chemical reagents were used in the experiments process without further purification. The deionized (DI) water was used throughout this experiment.

2.2. Synthesis of Na₂Ti₃O₇ ultralong nanotubes

The hydrothermal synthesis of Na₂Ti₃O₇ ultralong nanotubes was according to literature procedure [21,22]. Typically, 0.2 g of P25 powder was added to 30 mL of 10 M NaOH aqueous solution with continuous stirring for 5 min. Then the slurry was transferred into 50 mL Teflon-lined stainless-steel autoclave with a magnetic stirrer. The autoclave was put inside a silicon oil bath on a heating platform and the reaction temperature was set at 130 °C for 24 h and 500 rpm. After reaction, the autoclave was cooled to room temperature naturally. The precipitate was recovered, washed with distilled water for several times to remove excess NaOH. The obtained product was further cleaned by using 0.1 M HCl solution for three times to produce high purity Na₂Ti₃O₇ ultralong nanotubes, and washed again with distilled water for several times until pH = 7.

2.3. Synthesis of $g-C_3N_4$

 $g-C_3N_4$ was prepared by heating dicyandiamide in a muffle furnace at 550 °C for 4 h. After being naturally cooled to room temperature, a faint yellow $g-C_3N_4$ was obtained [23,24].

2.4. Fabrication of $g-C_3N_4/TiO_2$ nanowire heterojunctions

A typical fabrication process of g-C₃N₄/TiO₂ nanowire heterojunctions was described as following: Firstly, a certain amount of g-C₃N₄ and Na₂Ti₃O₇ ultralong nanotubes were mixed with 30 mL distilled water in a beaker. Then the beaker was placed in an ultrasonic bath for 30 min to obtain a heterogeneous mixture. The mixture was transferred into 50 mL Teflon-lined stainless-steel autoclave. The autoclave was maintained at 200 ° C for 4 h in an oven. Finally, g-C₃N₄/TiO₂ nanowire heterojunctions were obtained. g-C₃N₄/TiO₂ nanowire heterojunctions with different mass ratios of g-C₃N₄ to TiO₂ (m_{g-C3N4}: m_{TiO2} = 0.2, 1, 5 and 8) were synthesized and labelled as CTNH-0.2, CTNH-1, CTNH-5, CTNH-8, respectively.

2.5. Characterization

The crystalline phases of the samples were identified by using X-ray powder diffraction (XRD) techniques (Bruker D8 Advance diffractometer) operating with Cu K α radiation ($\lambda = 1.5418$ Å) at a scan rate (2 θ) of 3° min⁻¹. The scan range is from 10° to 70°. The morphologies of the samples were characterized by using a field emission scanning electron microscope (SEM, Hitachi S4800), and a Tecnai G2 F30 S-Twin transmission electron microscope (TEM, FEI, USA). X-ray photoelectron spectroscopy (XPS) was measured on a PHI-5000 VersaProbe instrument with Al K α X-ray source. The Fourier transform infrared spectra (FI-IR) of the samples were obtained with a PerkinElmer spectrum 100 of USA, in which KBr was used as diluents. UV–Vis diffuse reflectance spectra (UV–Vis) were recorded on a PerkinElmer Lambda750 spectrophotometer with wavelength range from 250 to 800 nm.

2.6. Photocatalytic reaction

Photocatalytic activity of the prepared g-C₃N₄/TiO₂ nanowire heterojunctions was assessed by the degradation of methylene blue (MB) aqueous solution under visible light irradiation. In a typical experiment, 40 mg of sample was dispersed in 100 mL of MB aqueous solution (10 mg/L) in a reactor. Firstly, the suspension was placed in the dark for 50 min to ensure an adsorption/desorption equilibrium between the catalyst surface and MB molecules. Secondly, the suspension was irradiated under a 300 W Xenon lamp (Perfect Light, PLS-SXE300C/ 300CUV) with a 420 nm cutoff filter ($\lambda \ge 420$ nm). Furthermore, 3 mL liquid samples was acquired at certain time intervals and immediately filtered to separate liquid samples from solid catalyst. Finally, the concentrations of MB before and after reaction were monitored by measuring the absorption band of MB (663 nm) using a Lambda750 UV-vis spectrophotometer. The degradation efficiency was evaluated according to C/C_0 (C_0 is the density of dyes after adsorption equilibrium; C is the density of dyes after reaction).

3. Results and discussion

3.1. Morphology and composition analysis

XRD patterns of sodium titanate, pure g-C₃N₄ and samples obtained by hydrothermal treating sodium titanate and g-C₃N₄ are shown in Fig. 1. For pristine sodium titanate, the diffraction peaks at 11.1°, 15.8°, 25.2°, 30.2°, 34.4°, 36.9°, 39.0°, 44.2°, 48.8°, 50.1° and 53.0° are observed, which are corresponding to (100), (200), (011), (300), (-303), (-204), (-401), (-214), (020), (120) and (220) crystal planes of Na2Ti3O7 (JCPDS, 59-0666) [25]. Two pronounced diffraction peaks around 12.9 $^\circ$ and 27.7 $^\circ$ are found in pure g-C_3N_4 (JCPDS, 87–1526), corresponding to (100) plane of the iner-planar tri-s-triazine unit and the (002) plane of the aromatic systems stacking between the interlayer, respectively [26–30]. It can be found that after hydrothermal treatment of Na₂Ti₃O₇ in the presence of g-C₃N₄, characteristic diffraction peaks of Na2Ti3O7 disappear, diffraction peaks of anatase phase TiO₂ (JCPDS, 84–1286) and g-C₃N₄ appear. With the increase of g-C₃N₄ content, the intensity of diffraction peaks of g-C₃N₄ increases and the intensity of diffraction peaks of anatase phase TiO₂ decreases. It indicates that under hydrothermal condition and the presence of g-C₃N₄, Na₂Ti₃O₇ transfer into anatase phase TiO₂ and simultaneously g-C₃N₄/ TiO₂ heterojunctions form in a strong possibility.

In order to further confirm the formation of $g-C_3N_4/TiO_2$ heterojunctions, SEM and TEM measurements were carried out. Fig. 2a-c firstly shows SEM, TEM and HRTEM images of as-synthesized $Na_2Ti_3O_7$. As shown in Fig. 2a, the $Na_2Ti_3O_7$ synthesized via stirring hydrothermal methods presents ultralong "nanobelts" structure [21]. The length of the ultralong "nanobelt" ranges from hundred micrometers to thousand

Fig. 1. XRD patterns of (a) g-C_3N_4, (b) CTNH-8, (c) CTNH-5, (d) CTNH-1, (e) CTNH-0.2 and (f) $Na_2Ti_3O_7$ ultralong nanotubes.

Download English Version:

https://daneshyari.com/en/article/7887963

Download Persian Version:

https://daneshyari.com/article/7887963

Daneshyari.com