
Author's Accepted Manuscript

Studies on spinel cobaltites, MCo₂O₄ (M=Mn, Zn, Fe, Ni and Co) and their functional properties

Devendrasinh Darbar, M.R. Anilkumar, Vijayaraghavan Rajagopalan, Indranil Bhattacharya, Hendry Izaac Elim, T. Ramakrishnappa, F.I. Ezema, Rajan Jose, M.V. Reddy

www.elsevier.com/locate/ceri

PII: S0272-8842(17)32704-9

DOI: http://dx.doi.org/10.1016/j.ceramint.2017.12.010

Reference: CERI16890

To appear in: Ceramics International

Received date: 2 October 2017 Revised date: 30 November 2017 Accepted date: 1 December 2017

Cite this article as: Devendrasinh Darbar, M.R. Anilkumar, Vijayaraghavar Rajagopalan, Indranil Bhattacharya, Hendry Izaac Elim, T. Ramakrishnappa, F.I Ezema, Rajan Jose and M.V. Reddy, Studies on spinel cobaltites, MCo₂O (M=Mn, Zn, Fe, Ni and Co) and their functional properties, *Ceramic International*, http://dx.doi.org/10.1016/j.ceramint.2017.12.010

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Studies on spinel cobaltites, MCo₂O₄ (M=Mn, Zn, Fe, Ni and Co) and their functional properties

Devendrasinh Darbar^{1,2,3}, M.R. Anilkumar⁴, Vijayaraghavan Rajagopalan², Indranil Bhattacharya³, Hendry Izaac Elim⁵, T. Ramakrishnappa⁶, F. I. Ezema⁷, Rajan Jose ⁸, M.V. Reddy^{1,9*},

²School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India

³Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN 38505, USA.

Udayapura, Kanakapura Road, Bengaluru-560082

Abstract

Optimization of electrodes for charge storage with appropriate processing conditions places significant challenges in the developments for high performance charge storage devices. In this article, metal cobaltite spinels of formula MCo₂O₄ (where M=Mn, Zn, Fe, Ni and Co) are synthesized by oxalate decomposition method followed by calcination at three typical temperatures, viz. 350, 550, and 750°C and examined their performance variation when used as anodes in lithium ion batteries. Phase and structure of the materials are studied by powder x-ray diffraction (XRD) technique. Single phase MnCo₂O₄, ZnCo₂O₄ and Co₃O₄ are

¹Department of Physics, National University of Singapore, Singapore 117542

⁴East West Institute of Technology, Bangalore, 560091 India

⁵ Department of Physics Department, Pattimura University, Ambon 97233, Indonesia.

⁶ Department of Chemistry, Dayananda Sugar Academy of Technology & Management

⁷Department of Physics & Astronomy, University of Nigeria, Nigeria 410001.

⁸Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia.

⁹Department of Materials Science and Engineering, National University of Singapore, Singapore 117546

Download English Version:

https://daneshyari.com/en/article/7887994

Download Persian Version:

https://daneshyari.com/article/7887994

Daneshyari.com