Author's Accepted Manuscript Co_2O_3 substitution effects on the structure and microwave dielectric properties of low-firing $(\text{Zn}_{0.9}\text{Mg}_{0.1})\text{TiO}_3$ ceramics Hongyu Yang, Enzhu Li, Yingfeng Yang, Yan Shi, Hongcai He, Shuren Zhang www.elsevier.com/locate/ceri PII: S0272-8842(17)32802-X DOI: https://doi.org/10.1016/j.ceramint.2017.12.097 Reference: CERI16977 To appear in: Ceramics International Received date: 7 November 2017 Revised date: 13 December 2017 Accepted date: 13 December 2017 Cite this article as: Hongyu Yang, Enzhu Li, Yingfeng Yang, Yan Shi, Hongcai He and Shuren Zhang, Co₂O₃ substitution effects on the structure and microwave dielectric properties of low-firing (Zn_{0.9}Mg_{0.1})TiO₃ ceramics, *Ceramics International*, https://doi.org/10.1016/j.ceramint.2017.12.097 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. #### **ACCEPTED MANUSCRIPT** # Co₂O₃ substitution effects on the structure and microwave dielectric properties of low-firing (Zn_{0.9}Mg_{0.1})TiO₃ ceramics Hongyu Yang, Enzhu Li*, Yingfeng Yang, Yan Shi, Hongcai He, Shuren Zhang School of Microelectronics and Solid State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China Tel: 86-28-8320-6695 Email: lienzhu@uestc.edu.cn #### **Abstract** Low-firing $(Zn_{0.9}Mg_{0.1})_{1-x}Co_xTiO_3$ (x = 0.02 ~ 0.10) (ZMC_xT) microwave dielectric ceramics with high temperature stability were synthesized *via* conventional solid-state reaction. The influences of Co_2O_3 substitution on the phase composition, microstructure and microwave dielectric properties of ZMC_xT ceramics were discussed. Rietveld refinement results show the coexistence of ZnTiO₃ and ZnB₂O₄ phases at x = 0.02 ~ 0.10. $(Zn_{0.9}Mg_{0.1})_{1-x}Co_xTiO_3$ ceramic with x = 0.06 (ZMC_{0.06}T) obtains the best combination microwave dielectric properties of: ε_r = 21.58, $Q \times f$ = 53,948 GHz, τ_f = -54.38 ppm/°C. For expanding its application in LTCC field, 3 wt. % ZnO-B₂O₃-SiO₂ (ZBS) and 9 wt. % TiO₂ was added into ZMC_{0.06}T ceramic, great microwave dielectric properties were achieved at 900°C for 4 h: ε_r = 26.03, $Q \times f$ = 34,830 GHz, τ_f = -4 ppm/°C, making the composite ceramic a promising candidate for LTCC industry. Key words: (Zn_{0.9}Mg_{0.1})TiO₃, Co₂O₃, ZnO-B₂O₃-SiO₂, microwave dielectric ceramics, low temperature sintering, LTCC #### 1. Introduction High frequency passive components such as microwave dielectric resonators and antenna have been rapidly developed for cellular phones and global positioning systems in the past decades. Low temperature co-fired ceramics (LTCC) technology has been playing a significant role in this field. Requirements for these dielectric components must combine excellent dielectric properties such as a moderate dielectric constant (ε_r), a low dielectric loss of the quality factor ($Q \times f$) and a near-zero temperature coefficient of resonant frequency (τ_f), which allows the components to operate normally under a wide temperature range[1-3]. ZnO-TiO₂ based ceramics have been one favorite research for years because of their excellent microwave dielectric properties. In their phase diagram reported by Yang and Swisher[4], three phases #### Download English Version: ## https://daneshyari.com/en/article/7888297 Download Persian Version: https://daneshyari.com/article/7888297 <u>Daneshyari.com</u>