
Author's Accepted Manuscript

Graphene/Fe₃O₄ nanocomposite: interplay between photo-Fenton type reaction, and carbon purity for the removal of methyl orange

Aqsa Arshad, Javed Iqbal, Ishaq Ahmad

www.elsevier.com/locate/ceri

PII: S0272-8842(17)31856-4

DOI: http://dx.doi.org/10.1016/j.ceramint.2017.08.157

Reference: CERI16111

To appear in: Ceramics International

Received date: 28 June 2017 Revised date: 28 July 2017 Accepted date: 23 August 2017

Cite this article as: Aqsa Arshad, Javed Iqbal and Ishaq Ahmad, Graphene/Fe $_3O_4$ nanocomposite: interplay between photo-Fenton type reaction, and carbon purity for the removal of methyl orange, *Ceramics International*, http://dx.doi.org/10.1016/j.ceramint.2017.08.157

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphene/Fe₃O₄ nanocomposite: interplay between photo-Fenton type reaction, and carbon purity for the removal of methyl orange

Aqsa Arshad^{1,2}, Javed Iqbal^{3,a)}, Ishaq Ahmad⁴

a) Corresponding author(s): aqsa.arshad@iiu.edu.pk; javed.saggu@qau.edu.pk

ABSTRACT: Graphene/Fe₃O₄ nanocomposite obtained via soft chemical method is characterized for its crystallinity, morphology, microstructure, optical properties, vibrational modes and magnetic properties. Graphene sheets decorated with magnetite nanoparticles are employed to investigate their photocatalytic response against methyl orange. The study reveals that the conducting nature of graphene, engineered bandgap and photo Fenton like reaction synergistically govern the efficient photocatalytic activity of nanocomposite. Interestingly, it is observed that methyl orange can be completely removed i.e., upto 99.24% by graphene/Fe₃O₄ nanocomposite, whereas the removal efficiency is 43% for Fe₃O₄ nanoparticles, alone. The presence of graphene endows the delay in charge carriers' recombination whereas, photo Fenton like reaction stimulates the generation of reactive oxygen species. This ultimately leads to the highly enhanced photocatalytic activity and complete removal of methyl orange. The magnetically separable photocatalyst, presented in this work, offers great prospects for fast and economical decontamination of dye polluted water.

¹Department of Physics, International Islamic University, Islamabad, Pakistan.

²Department of Physics, Durham University, South Road Durham, DH1 3LE, United Kingdom.

³Laboratory of Nanoscience and Technology, Department of Physics, Quaid i Azam University, Islamabad, Pakistan.

⁴Experimental Physics Labs, Professor Abdus Salam Centre of Physics, Islamabad, Pakistan.

Download English Version:

https://daneshyari.com/en/article/7888299

Download Persian Version:

https://daneshyari.com/article/7888299

<u>Daneshyari.com</u>