Author's Accepted Manuscript

Densification behavior of mullite- Al_2TiO_5 composites by reaction sintering of natural and and TiO_2

Liusheng Li, Qingfeng Wang, Guihua Liao, Kunpeng Li, Guotian Ye

www.elsevier.com/locate/ceri

PII: S0272-8842(17)32659-7

DOI: http://dx.doi.org/10.1016/j.ceramint.2017.11.191

Reference: CERI16846

To appear in: Ceramics International

Received date: 21 May 2017 Revised date: 1 November 2017 Accepted date: 26 November 2017

Cite this article as: Liusheng Li, Qingfeng Wang, Guihua Liao, Kunpeng Li and Guotian Ye, Densification behavior of mullite-Al₂TiO₅ composites by reaction sintering of natural andalusite and TiO₂, *Ceramics International* http://dx.doi.org/10.1016/j.ceramint.2017.11.191

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Densification behavior of mullite-Al₂TiO₅ composites by reaction sintering of natural andalusite

and TiO₂

Liusheng Li^{a,b}, Qingfeng Wang^b, Guihua Liao^{b,*}, Kunpeng Li^c, Guotian Ye^c

^a The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and

Technology, Wuhan 430081, China

b Henan Provincial Key Laboratory of Special Protective Materials, School of Materials Science

and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China

^c Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials

Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract:

In this work, mullite-Al₂TiO₅ composites were fabricated by natural andalusite with TiO₂ as

an additive. The densification characteristic, phase composition and mullitization process of

and alusite with TiO2 addition was investigated by the Archimedes' principle, dilatometry, X-ray

diffraction and scanning electron microscopy (SEM-EDS) techniques. The results showed that the

incorporation of TiO₂ not only enhanced the thermal stability of in-situ Al₂TiO₅ in the silica liquid

yielded from the mullitization of andalusite, but also accelerated andalusite decomposition and

retarded mullite formation, which facilitated the sintering and densification of mullite-Al₂TiO₅

composites.

Keywords: Andalusite, Al₂TiO₅, Mullite, Densification, Sintering

1. Introduction

Aluminum titanate (AT), Al₂TiO₅, has been recognized as an excellent candidate material for

refractory and engineering ceramics in the high temperature industries due to its low thermal

expansion coefficient, low thermal conductivity, high melting point and low Young's modulus[1].

Moreover, its excellent thermal shock resistance, good corrosion resistance and alkali resistance

properties are also good potential for diesel particulate filter and molten metal filtrations[2].

However, the practical applications of AT have been severely restricted, because of the low

mechanical strength due to the micro-cracks induced by high anisotropy of the thermal expansion

coefficients and the poor thermal stability associated with the phase decomposition into α -Al₂O₃

Download English Version:

https://daneshyari.com/en/article/7888367

Download Persian Version:

https://daneshyari.com/article/7888367

<u>Daneshyari.com</u>