
Author's Accepted Manuscript

Improving the electrical and microwave absorbing properties of Si₃N₄ ceramics with carbon nanotube fibers

Pinghui Ge, Kangning Sun, Aimin Li, Ge Pingji

www.elsevier.com/locate/ceri

PII: S0272-8842(17)32441-0

DOI: https://doi.org/10.1016/j.ceramint.2017.10.233

Reference: CERI16652

To appear in: Ceramics International

Received date: 17 September 2017 Revised date: 21 October 2017 Accepted date: 31 October 2017

Cite this article as: Pinghui Ge, Kangning Sun, Aimin Li and Ge Pingji, Improving the electrical and microwave absorbing properties of $\mathrm{Si_3N_4}$ ceramics with carbon nanotube fibers, *Ceramics International*, https://doi.org/10.1016/j.ceramint.2017.10.233

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Improving the electrical and microwave absorbing properties of Si₃N₄ ceramics

with carbon nanotube fibers

Pinghui Ge a,b, Kangning Sun A,b,*, Aimin Li A,b, Ge Pingji^c

^aKey Laboratory of Liquid-Solid Structure Evolution and Processing of Materials,

Ministry of Education, School of Materials Science and Engineering, Shandong

University, Jinan 250061, P. R. China.

^bShandong Provincial Key Laboratory of Engineeing Ceramics, School of Materials

Science and Engineering, Shandong University, Jinan 250061, P. R. China.

^cNormal college, Shihezi University, Shihezi 832003, P. R. China.

*Corresponding author. E-mail address: Sun_Kangning@163.com.

Abstract

Carbon nanotube fibers (CNTFs) reinforced Si₃N₄ ceramics has been prepared by

incorporating CNTF preforms into ceramic precursor and followed by the sintering

process. A SiC interface layer is formed due to the chemical reaction between Si and

CNTs, leading to a good bonding between CNTs and Si₃N₄ matrix. Due to the ceramic

deposition, the oxidation resistance is increased of 200 °C. Furthermore, the CNTs have

well orientation and high-volume distribution (7 wt.%) in the hybrid composites.

Obvious improvements of the electrical conductivity (up to 103 S/m) and the

microwave absorbing performance (up to 6 dB at 15 GHz) are obtained for the

composites containing CNTFs. Our work provides a meaningful way to fabricate

multifunctional ceramics possessing high electrical and microwave absorbind

properties.

Keywords: Carbon nanotubes, Si₃N₄, SiC, Composite

Download English Version:

https://daneshyari.com/en/article/7888403

Download Persian Version:

https://daneshyari.com/article/7888403

<u>Daneshyari.com</u>