
Author's Accepted Manuscript

Preparation, characterization and the antimicrobial properties of metal ion-doped TiO₂ nano-powders

Qianfei Zhao, Mei Wang, He Yang, Dai Shi, Yuzheng Wang

www.elsevier.com/locate/ceri

PII: S0272-8842(17)32826-2

DOI: https://doi.org/10.1016/j.ceramint.2017.12.117

Reference: CERI16997

To appear in: Ceramics International

Received date: 4 October 2017 Revised date: 5 December 2017 Accepted date: 15 December 2017

Cite this article as: Qianfei Zhao, Mei Wang, He Yang, Dai Shi and Yuzheng Wang, Preparation, characterization and the antimicrobial properties of metal iondoped TiO₂ nano-powders, *Ceramics International*,

https://doi.org/10.1016/j.ceramint.2017.12.117

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Preparation, characterization and the antimicrobial properties of metal ion-doped TiO_2 nano-powders

Qianfei Zhao^a Mei Wang^a,* He Yang^a Dai Shi^a Yuzheng Wang^b

Abstract: TiO₂ samples doped with lithium, sodium, magnesium, iron or cobalt were prepared by high-energy ball milling for different periods of time. The crystalline phase, chemical composition, crystalline size and photo-absorption were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS) and Ultraviolet visible diffuse reflectance spectroscopy (UV - Vis - DRS), Fourier transform infrared spectroscopy (FT - IR) and scanning electron microscopy (SEM). The antimicrobial properties of the modified TiO₂ samples were evaluated with E. coli and S.aureus assays. The results of the XRD show that the TiOSO₄, Ti₃O₅, Li₂TiO₃ and NaTi₂O₄ phases appear along with Li, Na and Mg doped TiO₂. However, XPS spectra indicated that Ti exists as both Ti³⁺ and Ti⁴⁺ in Na-doped TiO₂ samples. Ti³⁺, due to its narrow band gap, is highly active in promoting visible light-induced photocatalytic activity. SEM images showed that the crystalline size of TiO2 is reduced and has a common-round and hexagonal plate morphology after milling. The modified TiO₂ samples had the best antimicrobial activities after 3 h of milling. In particular, the antimicrobial rate of TiO₂ 5% doped with transition metals (Co, Fe) reached 100% against E. coli, but the antibacterial rate against S. aureus for Co and Fe dopants was 98.4% and 98.2%, respectively.

^a Institute of Metallurgical Resources and Environmental Engineering, Northeastern University, Shenyang 110819, China

^b School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

^{*} Corresponding author. E-mail address: wangmei@smm.neu.edu.cn (M. Wang)

Download English Version:

https://daneshyari.com/en/article/7888413

Download Persian Version:

https://daneshyari.com/article/7888413

<u>Daneshyari.com</u>