
Author's Accepted Manuscript

In-situ immobilization of Sr radioactive isotope using nanocrystalline hydroxyapatite

Marija Prekajski Đorđević, Jelena Maletaškić, Nadežda Stanković, Biljana Babić, Katsumi Yoshida, Toyohiko Yano, Branko Matović

www.elsevier.com/locate/ceri

PII: S0272-8842(17)32299-X

DOI: https://doi.org/10.1016/j.ceramint.2017.10.110

Reference: CERI16529

To appear in: Ceramics International

Received date: 6 October 2017 Revised date: 16 October 2017 Accepted date: 17 October 2017

Cite this article as: Marija Prekajski Đorđević, Jelena Maletaškić, Nadežda Stanković, Biljana Babić, Katsumi Yoshida, Toyohiko Yano and Branko Matović, In-situ immobilization of Sr radioactive isotope using nanocrystalline h y d r o x y a p a t i t e , *Ceramics International*, https://doi.org/10.1016/j.ceramint.2017.10.110

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

In-situ immobilization of Sr radioactive isotope using nanocrystalline

hydroxyapatite

Marija Prekajski Đorđević^{1*}, Jelena Maletaškić¹, Nadežda Stanković¹, Biljana Babić¹, Katsumi

Yoshida², Toyohiko Yano², Branko Matović¹

¹Department of Material Science, Institute of Nuclear Sciences Vinča, University of Belgrade,

Mike Petrovića-Alasa 12-14, 11000 Belgrade, Serbia

²Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of

Technology, 2-12-1 Ookayama, Meguro-ku, 152-8550 Tokyo, Japan

Corresponding author: Marija Prekajski Đorđević, prekajski@vinca.rs

Abstract

Hydroxyapatite was used as the inert matrix for in-situ immobilization of stroncium (Sr)

radioactive isotopes at room temperature. A nano-emulsification method was applied to

synthesize Sr-substituted calcium hydroxyapatite (Ca_{1-x}Sr_x)₁₀(PO₄)₆(OH)₂. The concentration of

incorporated Sr was in the range of $0 \le x \le 1$. Immobilization of Sr was evaluated using a stable

isotope instead of radioactive isotope. The effect of strontium concentration on the crystal

structure was studied and the results have showed that in the whole concentration range, Sr forms

solid solutions with the host hydroxyapatite crystal structure. Powders comprised of nanometre

sized particles were obtained and their properties, such as crystallite and particle size, changes in

lattice parameters as function of dopant content and thermal stability, were further examined. It

1

Download English Version:

https://daneshyari.com/en/article/7889044

Download Persian Version:

https://daneshyari.com/article/7889044

<u>Daneshyari.com</u>