
Author's Accepted Manuscript

Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment

Bin Du, Changqing Hong, Anzhe Wang, Shitong Zhou, Qiang Qu, Shanbao Zhou, Xinghong Zhang

www.elsevier.com/locate/ceri

PII: S0272-8842(17)32140-5

DOI: https://doi.org/10.1016/j.ceramint.2017.09.212

Reference: CERI16383

To appear in: Ceramics International

Received date: 5 September 2017 Revised date: 19 September 2017 Accepted date: 26 September 2017

Cite this article as: Bin Du, Changqing Hong, Anzhe Wang, Shitong Zhou, Qiang Qu, Shanbao Zhou and Xinghong Zhang, Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment, *Ceramics International*, https://doi.org/10.1016/j.ceramint.2017.09.212

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Preparation and structural evolution of SiOC preceramic aerogel during high-

temperature treatment

Bin Du¹, Changqing Hong¹*, Anzhe Wang, Shitong Zhou¹, Qiang Qu², Shanbao

Zhou¹, Xinghong Zhang¹*

¹National Key laboratory of Science and Technology on Advanced Composites in

Special Environments, Harbin Institute of Technology, Harbin 150001, P.R. China

²China Academy of Launch Vehicle Technology, Beijing 100000, P.R. China

Abstract

Silicon oxycarbide (SiOC) ceramic aerogels in mesopores range have been fabricated

by pyrolyzing polycarbosilane aerogels in nitrogen (N₂) atmosphere. The reactants,

8-tetramethyl-2, poly(methylhydrosiloxane) and 2, 4,

tetravinylcyclotetrasiloxane have been heated in the presence of hydrochloroplatinic

acid. As-prepared SiOC preceramic aerogel has specific surface area of 299 m²/g at

room temperature, and decomposes during pyrolysis. Structural evolution of the

aerogels as a function of heat-treatment temperature has been investigated by Fourier

transform infrared spectrophotometer, X-ray diffraction analysis, transmission

electron microscopy and X-ray photoelectron spectroscopy. Results indicate that

tetrahedral Si-O-C network underwent four structural changes during thermal

treatment from room temperature to 1600 °C.

Keywords: Aerogels; SiOC ceramics; Polymer-derived ceramic aerogels

* Corresponding author: Tel/fax: +86 451 86403871

E-mail address: hongcq@hit.edu.cn (C. Hong), zhangxh@hit.edu.cn (X. Zhang)

Download English Version:

https://daneshyari.com/en/article/7889155

Download Persian Version:

https://daneshyari.com/article/7889155

<u>Daneshyari.com</u>