Accepted Manuscript

Research on High Electromagnetic Interference Shielding Effectiveness of a Foldable Buckypaper/Polyacrylonitrile Composite Film via Interface Reinforcing

Qianshan Xia, Zhichun Zhang, Hetao Chu, Yanju Liu, Jinsong Leng

PII: S1359-835X(18)30283-5

DOI: https://doi.org/10.1016/j.compositesa.2018.07.019

Reference: JCOMA 5114

To appear in: Composites: Part A

Received Date: 8 March 2018 Revised Date: 12 July 2018 Accepted Date: 15 July 2018

Please cite this article as: Xia, Q., Zhang, Z., Chu, H., Liu, Y., Leng, J., Research on High Electromagnetic Interference Shielding Effectiveness of a Foldable Buckypaper/Polyacrylonitrile Composite Film via Interface Reinforcing, *Composites: Part A* (2018), doi: https://doi.org/10.1016/j.compositesa.2018.07.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Research on High Electromagnetic Interference Shielding

Effectiveness of a Foldable Buckypaper/Polyacrylonitrile Composite

Film via Interface Reinforcing

Qianshan Xia ^a, Zhichun Zhang ^a, Hetao Chu ^a, Yanju Liu ^b, Jinsong Leng

^a Center for Composite Materials and Structures, No. 2 YiKuang Street, Science Park of

Harbin Institute of Technology (HIT), Harbin 150080, PR China

^b Department of Aerospace Science and Mechanics, No. 92 West DaZhi Street, Harbin

Institute of Technology (HIT), Harbin 150001, PR China

Abstract

Herein, a series of foldable buckypaper/polyacrylonitrile (BP/PAN) composite films

were developed in a facile strategy. This strategy was based on electrospun and vacuum

pressurized filtration methods. The composite film had better mechanical properties

than pristine BP via interface reinforcing, but not deprived of excellent conductivity.

The maximum tensile strength and elongation at break of BP/PAN films were 1.45 and

11.65 times than pristine BP, respectively. Moreover, BP/PAN film had higher

electromagnetic interference (EMI) shielding effectiveness (63.7-65 dB) in the Ku band

(12-18 GHz) than pristine BP (34.3-42.9 dB), due to interfaces forming between PAN

fibers and CNTs. The BP/PAN composite as a promising EMI shielding material could

be utilized in military and civil applications, such as flexible antenna, EMI shielding

clothes and soft portable electronic products.

Key words: Buckypaper; Polymer-matrix composites; Electromagnetic interference

shielding.

Download English Version:

https://daneshyari.com/en/article/7889278

Download Persian Version:

https://daneshyari.com/article/7889278

<u>Daneshyari.com</u>