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a b s t r a c t

Carbon nanotube/aluminum (CNT/Al) composites are prepared by a combination of flake powder metal-
lurgy and hot-isostatic-pressing. The specimens are investigated by several techniques including Raman
spectroscopy, optical microscopy, scanning- and transmission electron microscopy. The composites show
a layered-microstructure with a stacking of CNT/Al flakes with a CNT-rich layer between two flakes. The
individual Al grains forming the flakes are about 500 nm in size. The CNTs are well dispersed within a
flake and they bridge the micro-cracks. The results reveal that the coefficient of thermal expansion
(CTE) decreases markedly upon the increase in carbon content, reaching 15.4 � 10�6 K�1 for the specimen
with a carbon content of 2.0 wt% (2.9 vol%), i.e. a 30% decrease compared to the CTE of pure Al. This could
arise from the layered-microstructure resulting from the utilization of Al flakes as opposed to rounded
particles.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Silicon, the material at the basis of the semiconductor devices,
shows a low coefficient of thermal expansion (CTE) (5 � 10�6

K�1) in comparison with the common packaging materials like
copper (17 � 10�6 K�1) and aluminum (21–26 � 10�6 K�1) [1,2].
The CTE difference will cause distortions at the interface upon
repeated changes in temperature, which ultimately will lead to
failure of the device. Aluminum-matrix composites with a lower
CTE than pure Al have been prepared by adding some low CTE
materials such as Si, SiC, AlN and diamond [2,3]. Carbon nanotubes
(CNTs) have been become an attractive additive material for reduc-
ing the CTE of the aluminum-matrix composites [4–13] because of
a very low or even negative CTE, in the range �2 � 10�5–0.5 �
10�5 K�1 depending on the CNT characteristics [14]. The end
results however depend on many materials- or process-
parameters, including the precise nature of the matrix (pure or
alloyed Al), of its grain size (nano-, micrometric), of the carbon
content and of the kind of CNTs (single-wall, double-walled,
multi-walled) and of the consolidation route (hot-pressing, hot
extrusion. . .) and atmosphere (vacuum, N2, Ar) (Table 1). CTE as

low as 10 � 10�6 K�1 have been reported when using
nanometric-sized Al with either single-wall CNTs [7] or multi-
walled CNTs (MWCNTs) [12]. Many techniques have been devel-
oped to prepare CNT/Al composite powders with a uniform disper-
sion of the CNTs [4,5,13,15,16]. However, high-energy ball-milling
[13] tends to damage the CNTs whereas molecular-level mixing
[15] and in situ synthesis of CNTs in metallic powders [16] may
lead to oxide impurities. Besides these techniques, the so-called
polyester binder-assisted (PBA) mixing technique has been
reported for dispersing CNTs in a metallic powder, without damag-
ing them, with the support of polyesters such as polyvinyl alcohol
(PVA), natural rubber and ethylene glycol [17–23]. Moreover, it
seems that using Al in the form of flakes, as opposed to isotropic
grains, to prepare CNT/Al composites, is beneficial, at least to
increase tensile strength without losing too much plasticity
[19,20,24–26]. The aim of this study is to investigate the CTE of
MWCNT/Al composites prepared by a combination of flake powder
metallurgy, PBA mixing technique and hot-isostatic-pressing.

2. Experimental

2.1. Composite preparation

A commercial Al powder (Hunan Jinhao Aluminum Industrial
Co., Ltd., 99.5%, average diameter 24 lm) was selected for the
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study. Commercial carboxyl-functionalized MWCNTs (Chengdu
Organic Chemicals Co. Ltd.) were used. The details of the function-
alization process are not known to the authors. The carbon content
in the MWCNT specimen is equal to 95 wt%, the balance probably
corresponding to some residual metal catalysts. The key character-
istics of the MWCNTs (number of walls, outer and inner diameters,
length and presence of defects) are determined later in the paper.
MWCNT/Al composite powders with a carbon content (Cn) equal to
0, 0.5, 1, 1.5 and 2 wt% were prepared by a PBA mixing route. They
will be noted as P0, P0.5, P1, P1.5 and P2 hereafter. First, the Al
powder was ball-milled (200 rpm, 2 h, ball-to-powder weight ratio
of 10:1, N2 atmosphere). The so-obtained Al flakes were slowly
added to ethylene glycol under magnetic stirring (400 rpm, 2 h),
forming the Al slurry. The appropriate amount of MWCNTs was
dispersed in ethanol as reported earlier [27,28] and the so-
obtained suspension was mixed with the Al slurry under magnetic
stirring (400 rpm, 2–3 h) at 80 �C in order to evaporate ethanol.
Finally, the resulting slurry was ball-milled (150 rpm, 2 h, ball-
to-powder weight ratio of 10:1, N2 atmosphere) and heated at
220 �C for 24 h in vacuum (residual pressure 200 MPa) to remove
ethylene glycol. The MWCNT/Al powders were consolidated by
cold uniaxial compaction (200 MPa, 5 s) followed by capsule-free
hot-isostatic-pressing (HIP, AIP6-30H, Isostatic Press Inc’s, US).
The specimens were heated (10 �C/min) up to 620 �C, applying a
1 h dwell at this temperature for the pressing process (100 MPa).

A natural cooling down to room temperature was performed. The
sintered specimens, in the form of pellets 10 mm in diameter
and about 5 mm thick, were polished down to 1 mm using diamond
slurries. The sintered specimens are noted S0, S0.5, S1, S1.5 and S2
hereafter.

2.2. Characterization

The MWCNTs were observed by high-resolution transmission
electron microscopy (HRTEM, JEOL JEM 2100F operated at 200
kV). Their length was evaluated from field-emission-gun scanning
electron microscopy images (FESEM, Hitachi S-4800 operated at 5
kV). The Raman spectra of the CNTs, powders and sintered speci-
mens were recorded with a confocal RAMAN Microscope (Labram
HR 800 Jobin Yvon) using 632 nm laser excitation. For each speci-
men, the spectra were averaged from five areas. The pellet density
was measured by Archimedes method. X-ray diffraction (XRD) pat-
terns of powders and sintered specimens were recorded using a
Rigaku Rint Ultima diffractometer with Cu Ka radiation. The Al
grain size in sintered specimens was determined by optical micro-
scopy (3D KEYENCE VHX-1000) on surfaces chemically etched by a
weak reagent (mixture of 0.25 mol L�1 KMnO4 and 0.25 mol L�1

NaOH) at room temperature for 6 s. The Al powders and flakes as
well as the sintered specimens were observed by FESEM (JEOL
JSM 6700F operated at 5 kV and Hitachi S-4800 operated at 5

Table 1
Consolidation method, relative density (q ± 1%), microhardness and CTEs of CNT/Al composites with different carbon contents (Cn, wt% or Cv, vol%).

Ref. Consolidation method Sample Cn (wt%) Cv (vol%) q (%) H (HV) CTE ( � 10�6 K�1)

[39] SPS Al 0 – – 45 –
MWCNT/Al 0.5 – – 50 –

[40] SPS MWCNT/Al 2 – 99 88 –
[34] SPS MWCNT/Al 1 – – 44 –

3 – – 55 –
5 – 54.5 –

[18] SPS
+ Hot extrusion

MWCNT/Al 2 98 52 –

[32,35] Vacuum sintering Al 0 – 34 –
MWCNT/Al 0.75 – 50

[36] Hot-extrusion Al 0 99 39.4 –
MWCNT/Al 2.5 99 84.5 –

5 99 95.2 –
[37] Hot-extrusion MWCNT/Al 6 97 151 –
[6] Hot-pressing Al 0 – – 26.1

MWCNT/Al 4 – – 23.2
SWCNT/Al 3 – – 20.4

[7] Vacuum sintering n-Al 0 – – 26.2
SWCNT/n-Al 10 – – 14.8

15 – – 9.8
[8] Hot-extrusion 2024 Al 0 – – 26.3

MWCNT/2024Al 1 22.5
[9] Hot-pressing 2009Al 0 – – 23.6

MWCNT/2009Al 1.5 – – 21.3
MWCNT/2009Al 4.5 – – 17.5

[11] Hot-pressing + Vacuum sintering MWCNT/2024Al 3 – – 19.2
MWCNT/2024Al 5 – – 17.9

[12] Sintering in N2 n-Al 0 – 90 – 80.1
MWCNT/n-Al 1 92 – 54.4
MWCNT/n-Al 3 94 – 10.5
MWCNT/n-Al 5 92 – 23.2

[13] Sintering in Air + Hot-extrusion Al 0 – 64 26.0
MWCNT/Al 1.5 – 81 24.8
MWCNT/Al 2.5 – 95 24.0
MWCNT/Al 3.5 – 115 22.5
MWCNT/Al 4.5 – 130 21.5

This work HIP S0 0 0 98 44 22.0
S0.5 0.5 0.7 96 55 19.5
S1 1.0 1.5 96 69 18.0
S1.5 1.5 2.2 95 83 16.4
S2 2.0 2.9 94 62 15.4
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