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a b s t r a c t

Current strategies of computational crystal plasticity that focus on individual atoms or dis-
locations are impractical for real-scale, large-strain problems even with today’s computing
power. Dislocation-density based approaches are a way forward but a critical issue to
address is a realistic description of the interactions between dislocations. In this paper, a
new scheme for computational dynamics of dislocation-density functions is proposed,
which takes full consideration of the mutual elastic interactions between dislocations
based on the Hirth–Lothe formulation. Other features considered include (i) the continuity
nature of the movements of dislocation densities, (ii) forest hardening, (iii) generation
according to high spatial gradients in dislocation densities, and (iv) annihilation. Numerical
implementation by the finite-volume method, which is well suited for flow problems with
high gradients, is discussed. Numerical examples performed for a single-crystal aluminum
model show typical strength anisotropy behavior comparable to experimental observa-
tions. Furthermore, a detailed case study on small-scale crystal plasticity successfully cap-
tures a number of key experimental features, including power-law relation between
strength and size, low dislocation storage and jerky deformation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of crystal dislocations has been coined for over a century, with a huge knowledge base on how single dislo-
cations behave, or how they interact in individual events, gathered for a wide range of crystalline (See above-mentioned
references for further information.)materials. On the other hand, although crystal plasticity has to take place in units of dis-
locations, decades of experience have witnessed the impracticalities involved in computing all the participating dislocations,
given that they can quickly multiply to very large quantities during plastic deformation. The introduction of atomistic molec-
ular dynamics (MD) simulation in the 1960s has allowed the cores of dislocations to be studied (Vitek et al., 1970; Vitek,
1974). However, despite computer speeds are faster than ever before, and new rare-event sampling and other computational
methodologies have been developed, MD simulations are still limited to nano- space and time scales which are far too small
compared to most engineering applications of interest, and it is hard to see how such a bottleneck can be circumvented in
the future. In the 1990s, discrete dislocation dynamics (DDD) emerged as a dislocation plasticity simulation technique which
deals with the evolution of individual dislocation lines according to their laws of motion (Amodeo and Ghoneim, 1990;
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Devincre and Condat, 1992; Devincre and Kubin, 1997; Bulatov et al., 1998; Bulatov and Cai, 2006). In this approach, how-
ever, each curved dislocation line is discretized into short linear segments and very expensive calculation is performed on
each of these to predict their trajectories according to their very complicated line-tension and mutual interaction effects.
Therefore, although promising results have been demonstrated for situations with relative small quantities of dislocations,
this method is impractical for higher dislocation quantities due to the amount of computation involved. DDD is therefore
self-limiting at increasing strains, and is not practical for situations where patterns of dense dislocations develop
(Walgraef and Aifantis, 1985; Aifantis, 1986; Hähner, 1996; Ngan, 2005; Pontes et al., 2006), although observations from
DDD simulations can be fed into a continuum crystal plasticity model as a multi-scale approach, to predict more realistic
behaviors (Devincre et al., 2008).

In stark contrast with these approaches which emphasize on individual atoms or dislocation segments, a number of
researchers have advocated the use of a modeling strategy that focuses on dislocation density (Walgraef and Aifantis,
1985; Groma, 1997; Acharya, 2001; Arsenlis et al., 2004; Zhou and Sun, 2004; Evers et al., 2004; Yefimov and Van der
Giessen, 2005; Pontes et al., 2006; Ma et al., 2006; Hochrainer et al., 2007; Lee et al., 2010; Watanabe et al., 2010;
Alankar et al., 2011; Hirschberger et al., 2011; Bargmann et al., 2011; Liu et al., 2011; Shanthraj and Zikry, 2012; Engels
et al., 2012; Aghababaei and Joshi, 2013; Li et al., 2014). Unlike DDD which becomes handicapped at high strains, such a
strategy would be well suited for large-strain problems with high quantities of dislocations, since any amount of dislocations
can still be represented a dislocation density. The earlier group of dislocation-density models deals with discrete categories
of dislocation density, such as mobile vs. immobile, cell-interior vs. cell-wall, and edge vs. screw (Roters et al., 2000; Prasad
et al., 2005; Ma et al., 2006; Alankar et al., 2011; Vinogradov et al., 2012), but without considering the field nature of the
dislocation densities and the conservative nature of their motion (Walgraef and Aifantis, 1985). A more sophisticated group
of approach focuses primarily on the kinematics or dynamics of slip systems (Asaro and Rice, 1977) and their relationships to
densities of dislocations. Typically, the shear of slip systems against a critical resolved shear stress governed by certain basic
dislocation-level physics, such as Taylor’s forest hardening, is considered (Busso et al., 2000; Dunne et al., 2007, 2012;
Alankar et al., 2009; Cordero et al., 2012). Other models have focused on dislocation densities as continuous functions of
space, with conservation including generation and annihilation duly taken into account (Acharya, 2001; Arsenlis et al.,
2004; Zhou and Sun, 2004; Evers et al., 2004; Yefimov and Van der Giessen, 2005; Pontes et al., 2006; Hochrainer et al.,
2007; Hirschberger et al., 2011; Bargmann et al., 2011; Puri et al., 2011). These models are based on crystal kinematics rules
which govern the relationship between the evolution of geometrically necessary dislocations (GNDs) and the rate of change
of the crystal shape (Asaro and Rice, 1977). In doing so, the statistically stored dislocations (SSDs) are modeled much less
rigorously, and so the interactions between dislocations and the internal stresses are not completely described.

Still within the framework of crystal kinematics, other models have featured improved descriptions of the internal stres-
ses that resist slip. In the ‘‘field dislocation mechanics’’ (FDM) and ‘‘phenomenological mesoscale field dislocation mechan-
ics’’ (PMFDM) models developed by Acharya and co-workers (Acharya, 2001; Taupin et al., 2008; Puri et al., 2011), the crystal
kinematics laws for the GND evolution are modified to include the effects of lattice incompatibility in the plastic and elastic
deformation matrices due to the presence of the dislocations themselves. The evolution of the GNDs is coupled to that of
SSDs, the motion of which is modeled in terms of a phenomenological back-stress interaction resistance which involves
empirical hardening and recovery coefficients (Puri et al., 2011). The models by Yefimov and Van der Giessen (2005) and
Hirschberger et al. (2011) also involve a similar empirical back stress resistance, which lacks details of the long-range elastic
interactions between dislocations. In the model by Arsenlis et al. (2004), a configurational resistance is also involved which is
an empirical back stress pertinent only to elastic interactions in 2-D dislocation arrays (Groma et al., 2003). In the recent
approach by Bertin et al. (2013), the coupled evolutions of GNDs and SSDs are also considered, and for the SSDs, a virtual
loop concept is involved to sample interactions for different line orientations.

Another line of development to capture realistic dislocation interactions was made by Hochrainer and co-workers
(Hochrainer et al., 2007; Zaiser et al., 2007; Sandfeld et al., 2010, 2011). In their continuum dislocation dynamics (CDD) the-
ory, the curvature and line-tension effects of dislocations are emphasized as the main factors contributing to the internal
stress, in addition to Taylor’s interactions. The inclusion of the dislocation curvature requires its evolution to be modeled
as a coupled problem with the evolution of the dislocation density, and this inevitably greatly increases the computational
efforts needed (Sandfeld et al., 2011). For this reason, successful numerical implementation has been limited to situations
involving crude discretization of the line-direction space (Zaiser et al., 2007), or very simple slip-system configurations
(Zaiser et al., 2007; Sandfeld et al., 2010, 2011). While this approach is elegant, efficient numerical implementation algo-
rithms are yet to be developed for problems involving realistic dislocation microstructures. Moreover, this approach high-
lights the ‘‘self’’ line tension and Taylor hardening as the only internal stresses (Zaiser et al., 2007; Sandfeld et al., 2011),
while the long-range elastic interactions between dislocation groups are not modeled.

The above summary points to the fact that an accurate description of the mutual elastic interactions between dislocations
has been a critical issue in developing realistic dislocation-density models. In this paper, we propose a new formulation
which fully considers such mutual elastic interactions between 3-D dislocation densities, in an exact manner without involv-
ing any ad hoc back-stress assumption as in some of the previous models. This is made possible by generalizing the elastic
interactions between dislocation segments (Hirth and Lothe, 1992) for dislocation densities, and reducing the line-integral
formulation involved into an algebraic form comprising only elementary functions which are straightforward enough for
efficient numerical implementation. Also, instead of separating the dislocation population into GNDs and SSDs as in the pre-
vious crystal-kinematics-based models, we use a fully dynamics approach which is similar to that used in MD and DDD
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