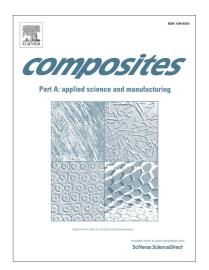
Accepted Manuscript

Enhanced sound insulation and mechanical properties of LDPE/mica composites through multilayered distribution and orientation of the mica

Lichao Xia, Hong Wu, Shaoyun Guo, Xiaojie Sun, Wenbin Liang

PII: S1359-835X(15)00433-9


DOI: http://dx.doi.org/10.1016/j.compositesa.2015.11.023

Reference: JCOMA 4136

To appear in: Composites: Part A

Received Date: 27 July 2015

Revised Date: 12 November 2015 Accepted Date: 14 November 2015

Please cite this article as: Xia, L., Wu, H., Guo, S., Sun, X., Liang, W., Enhanced sound insulation and mechanical properties of LDPE/mica composites through multilayered distribution and orientation of the mica, *Composites: Part A* (2015), doi: http://dx.doi.org/10.1016/j.compositesa.2015.11.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Enhanced sound insulation and mechanical properties of LDPE/mica composites

through multilayered distribution and orientation of the mica

Lichao Xia ^a, Hong Wu ^{a,*}, Shaoyun Guo ^{a,*}, Xiaojie Sun ^b, Wenbin Liang ^b

^a The State Key Laboratory of Polymer Materials Engineering, Polymer Research

Institute of Sichuan University, Chengdu, Sichuan, People's Republic of China

^b National Institute of Clean-and-Low-Carbon Energy, Beijing, People's Republic of

China

Abstract: In this work, the composites with multilayered distribution of the mica were

fabricated by a multilayer coextrusion technique. The influence of layer number on

sound insulation and mechanical properties of multilayered composites was investigated.

The distribution, dispersion and orientation of mica particulates in composites were

characterized by PLM and SEM. The sound insulation property of composites was

measured by four microphone impedance tube. PLM and SEM images showed that the

mica was distributed as the multilayered structure along the thickness direction of the

composites. With the increase of layer number, more mica aggregates delaminated into

thin flakes and aligned parallel to the flow direction. Compared to the conventional

composites, the multilayered composites showed the enhanced sound insulation

efficiency and mechanical properties. The discontinuity of sound impedance and the

improved stiffness were considered to play a crucial role in the improvement of sound

transmission loss.

Keywords: A Polymer-matrix composites, B Vibration, D Scanning electron

* To whom correspondence should be addresses. (Prof. Wu, Email: wh@scu.edu.cn, Fax: 86-028-85466077)

* To whom correspondence should be addresses. (Prof. Guo, Email: <u>nic7702@scu.edu.cn</u>, Fax: 86-28-85405135)

Download English Version:

https://daneshyari.com/en/article/7891316

Download Persian Version:

https://daneshyari.com/article/7891316

<u>Daneshyari.com</u>