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a b s t r a c t

Finite element calculations were used to bound the modulus of aligned, short-fiber composites with ran-
domly arranged fibers, including high fiber to matrix modulus ratios and high fiber aspect ratios. The
bounds were narrow for low modulus ratio, but far apart for high ratio. These numerical experiments
were used to evaluate prior numerical and analytical methods for modeling short-fiber composites.
Prior numerical methods based on periodic boundary conditions were revealed as acceptable for low
modulus ratio, but degenerate to lower bound modulus at high ratio. Numerical experiments were also
compared to an Eshelby analysis and to an new, enhanced shear lag model. Both models could predict
modulus for low modulus ratio, but also degenerated to lower bound modulus at high ratio. The new
shear lag model accounts for stress transfer on fiber ends and includes imperfect interface effects; it
was confirmed as accurate by comparison to finite element calculations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In mean-field modeling of short-fiber composite materials, a
composite unit cell is subjected to mean stress or strain and the
effective stiffness or compliance tensors are found by averaging
strains and stresses throughout the composite [1]. This averaging
is done over all unit cell orientations using a fiber orientation dis-
tribution function. The unit cell for this analysis is a short fiber
composite with all fibers aligned in the same direction. Thus, the
fundamental problem for analysis of short-fiber composites is to
determine mechanical properties of an aligned, short-fiber
composite.

One might think this problem is solved by methods such as
Eshelby [2], Mori–Tanaka [3], modern shear-lag models [4–7], or
numerical methods [8–13], but some gaps appear. First, most prior
numerical studies have been limited to modest fiber/matrix mod-
ulus ratios of R ¼ Ef =Em < 30 and relatively short fiber aspect
ratios, q ¼ lf =df < 30 [8,9,11,13]. Gusev and Lusti [10,12] looked
at higher aspect ratios, but only for a narrow selection of R and
fiber volume fraction, Vf . As a consequence, the validation of ana-
lytical models by these numerical studies [9] only validates them
for the corresponding small range of properties.

A recent trend in composites research, especially in nanocom-
posites, is to reinforce soft polymers (e.g., elastomers with

R > 104) and isolate nano-fibers with aspect ratios higher then
30 [14–17]; the results of such work has been a challenge to model.
Fig. 1 show some experimental results for reinforcement of an elas-
tomer with nano-cellulose fibers [14] and compares them to an
existing analytical model (labeled ‘‘Mori–Tanaka’’ [3]) and an exist-
ing numerical method based on large periodic representative vol-
ume elements (RVEs) with randomly placed fibers (labeled
‘‘Periodic RVE (FEA)’’ using approach of Gusev [8]). These experi-
mental results are two to three orders of magnitude higher then
existing models. The question arises—are these high reinforce-
ments the discovery of a new nano-phenomenon that cannot be
modeled with continuum mechanics or do continuum methods
just need to be revised for high R? To explore this question, we
developed a new numerical method to derive upper and lower
bounds to the modulus. The sample calculation of bounds in
Fig. 1 (see dashed lines) shows that experimental results fall within
continuum mechanics bounds and that prior modeling methods all
degenerate to lower bound results. In other words, the methods
described here have new potential to guide expectations of proper-
ties for composites with high R.

To study composite modeling methods at high R and aspect
ratio as well has how they relate to conventional methods at low
R and aspect ratio, we ran numerical calculations for a very wide
range of R (from 10 to 105) and aspect ratios (from 5 to 100). The
calculations in this part of the study were based on novel methods
that allowed us to numerically determine upper and lower bounds
to the fiber-direction modulus. The shear number of calculations
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along with the size of mesh (particularly at high aspect ratio) pre-
cluded mesh refinement of numerical results. A powerful feature of
the bounding method, however, is that it allows one to get defini-
tive bounds even without mesh convergence. These numerical
results provided input for considering four questions:
What is correct modulus? One of the best ways to judge the accu-
racy of modeling methods is to compare them to numerical results
[9], but what numerical method gives the correct modulus? Here
we derived numerical bounds using Monte Carlo methods with
randomly placed and well-dispersed, aligned fibers. We used
bounding methods to define limits on the modulus for R up to
105 and q up to 100. The separation of the bounds shows that
the calculated modulus depends on boundary conditions, espe-
cially for large R.
How do periodic RVE calculations compare to numerical bounds?
Most numerical models use periodic RVEs and assume analysis
results with periodic boundary conditions are equivalent to bulk
composite properties. To test this hypothesis, we compared the
new numerical bounds to both small periodic RVEs (using either
cylindrical (rectangles in 2D) or elliptical fibers) and large RVEs
with random fibers. All periodic RVE methods work well for low
R, but degenerate to lower bound results at high R.
Can an analytical model sufficiently capture the results of periodic RVE
composites? Given the capabilities (and limitations) of periodic RVE
analysis, an analytical model that agrees with those numerical
results would have those same capabilities (and limitations). We
developed an improved shear-lag model for short composite fibers
that explicitly includes stress transfer on the fiber ends and imper-
fect interfaces. The new model, along with an Eshelby [2] analysis,
were compared to numerical results on the same geometries.
These analytical methods can reproduce numerical methods based
on periodic conditions, which means they give good prediction for
low R, but degenerate to lower bound results for high R.
Can an analytical model account for 3D fibers and for imperfect inter-
faces? The first three questions used 2D calculations and assumed
perfect fiber/matrix interfaces. Real composites are 3D and may
have imperfect interfaces. We lastly considered 3D single fiber
RVE results by comparing axisymmetric numerical calculations
with imperfect interfaces to the new shear lag analysis with
concentric cylinders that also includes imperfect interface effects.
The new model accurately reproduces all numerical results
including the role of imperfect interfaces.

2. Methods

All finite element calculations (FEA) were linear elastic, static,
and two dimensional. Most simulations were plain strain analyses
although some 3D results were generated using axisymmetric sim-
ulations. All calculations were done using the open source code
NairnFEA [18] with 8-node quadrilateral elements. Issues involving
convergence are discussed in Section 3. By using script control, we
automated the thousands of FEA calculations needed to get suffi-
cient results for answering the posed questions. The FEA calcula-
tions were run on either desktop computers or Linux nodes in a
cluster. The main requirement for the largest calculations was to
have sufficient memory (more than 5 GB).

3. Results and discussion

3.1. What is the Correct Modulus?

To run numerical experiments for the ‘‘correct’’ modulus of
aligned short fiber composites, we ran FEA calculations on repre-
sentative composites with randomly placed fibers. The fibers were
all aligned in one direction, placed using a random sequential
adsorption (RSA) method [11], and well dispersed (separated by
at least one element in the mesh). The numerical experiments were
done for fiber to matrix modulus ratios of R = 10, 100, 1000, 104,
and 105, for fiber aspect ratios of q ¼ 5, 10, 20, 40, 70, and 100,
and for fiber volume fractions of Vf ¼ 0:01, 0.02, 0.05, 0.1, 0.15,
0.2, and 0.25. Monte Carlo methods were used to account for the
random structures. For each combination of R;q, and Vf , we ran
FEA calculations for 20 random structures and averaged the results
for mean and standard deviation of the modulus. For most property
settings, the 20 replicates gave sufficiently narrow errors bars on
the results. The total number of FEA calculations required to map
the parameter space exceeded 15,000.

The first issue was the mesh. To deal with randomly placed
fibers with randomly situated stress concentrations, the modeling
used a regular mesh. A quick calculation showed that a 3D mesh
for the largest aspect ratio would have over a billion degrees of
freedom, which is infeasible for the 15,000 calculations we
needed to run. 3D calculations by Gusev [8] required 30
processor-hours per calculation and that was for spherical inclu-
sions (q ¼ 1) which can use much smaller RVEs then needed
here. We therefore switched to 2D, plain-strain FEA (which still
can be used to evaluate other methods provided comparisons
are made to 2D versions of those methods). Even in 2D, the mesh
could not be highly refined. We used the crudest mesh possible
where the element size was equal to the fiber diameter. Thus
each fiber had one element across its width and the
well-dispersed fibers were separated by at least one fiber diame-
ter (i.e., one mesh element). With this mesh, the largest calcula-
tion had about 200,000 degrees of freedom and could be
completed in 5–30 min (depending on computer speed).

Because we were limited to a crude mesh, we could not refine
the mesh for convergence. To allow definitive results with such a
mesh, we adopted a bounding method. In composite variational
mechanics, upper and lower bound results are found by the solving
the two problems in Fig. 2 [1,19–21]. First, the composite is sub-
jected to constant tractions, T , over the entire surface of

T ¼ r0 � n̂ ð1Þ

where r0 is the uniform applied stress and n̂ is surface normal. For
stress corresponding to axial loading in the fiber direction (see
Fig. 2A), the complementary energy, as approximated by FEA strain
energy (CFEA), must be greater than or equal to the exact comple-
mentary energy, C, leading to
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Fig. 1. The symbols are experimental results from Ref. [14] with R ¼ 9:5� 105,
which are compared to existing modeling methods (Mori–Tanaka and Periodic RVE
(FEA)) and to upper and lower bounds described in this paper (dashed lines). The
experiments are quasi-2D with fibers claimed to be randomly aligned in the plane
of a film. The models are 2D calculations for aligned fibers. The comparison with
experiments is only qualitative, but if experiments had aligned fibers, they would
move toward the upper bound and still demonstrate that prior models are near the
lower bound and far below experiments.
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