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a b s t r a c t

This paper presents a finite element model to optimise the fibre architecture of components manufac-
tured from discontinuous fibre composites. An optimality criterion method has been developed to max-
imise global component stiffness, by determining optimum distributions for local section thickness and
preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate
with three holes. Results are presented from a sensitivity study to highlight the level of compromise in
stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method,
such as the scale of component features relative to the fibre length.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Discontinuous fibre architectures offer greater design freedom
compared with conventional laminated composites, as the fibre
orientation distribution, fibre volume fraction (Vf), and fibre length
can all be locally varied in the component according to structural
requirements. A number of new high volume fraction discontinu-
ous fibre processes, such as Directed Carbon Fibre Preforming
[1,2] (DCFP) and Advanced Sheet Moulding Compounds [3]
(ASMC), offer exciting opportunities for structural applications
within the automotive industry. Recent developments have shown
that significant gains in mechanical performance can be achieved
by introducing fibre alignment [4], but the current lack of robust
design tools makes it difficult to exploit the versatility of these pro-
cesses, limiting these materials to ‘black metal’ design. This often
results in homogeneous isotropic fibre architectures similar to
those seen in lower performance moulding compounds.

Traditional optimisation routines are primarily concerned with
structural issues, such as the overall mass and stiffness of the com-
ponent. Topology, shape and size are the three main categories of
structural optimisation and a number of methods are well estab-
lished for designing with isotropic materials, but not in the context
of polymer reinforced composites. The most widely used structural
optimisation methods for composite materials adopt genetic algo-
rithms, a metaheuristic type approach [5]. These are only practical
for handling discrete problems and are more widely used for

optimising laminated composites where local thickness is con-
trolled by an integer number of plies. This approach is considered
to be unsuitable for optimising discontinuous fibre architectures,
as the number of search points increases dramatically due to the
design variables (local thickness and stiffness) being continuously
variable.

Other methods, such as non-linear programming [6,7], require
constant re-evaluation of the design objectives and constraints,
and are therefore very computationally expensive, particularly
for large structures. In comparison, optimality criterion approaches
[8] use simple local rules to update design variables, which are
much more efficient and suitable for complex problems. However,
these approaches do not yet appear to have been adopted in the lit-
erature for optimising discontinuous fibre composites structures.
CAE tools for optimising laminate structures are becoming popular,
but they are still relatively immature and are unsuitable for opti-
mising discontinuous fibre architecture, since there has been no
previous demand for further development. However, as the
mechanical performance of discontinuous fibre systems continue
to increase, these tools will play a vital role in the wider adoption
of these materials.

This paper presents a structural optimisation algorithm to
adjust both local thickness and material stiffness for a DCFP com-
ponent on an element by element basis. Stiffness optimality crite-
ria is derived and the method of solving Lagrangian multipliers is
adopted for each optimisation constraint, which include material
volume and material cost. Solving Lagrangian multipliers is the
classical approach to solving optimisation problems with equality
constraints [9]. The local section thickness and stiffness values
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are updated concurrently through an iterative process, with a
material cost model employed to understand the impact of
increasing thickness and material stiffness during each iteration.

Structural optimisation of meso-scale discontinuous fibre archi-
tecture composites involves a combination of continuous and dis-
crete design variables. The local thickness can be continuously
varied across the component and is independent of the fibre archi-
tecture, whereas a continuous change of fibre length or tow size is
impractical and therefore can only be varied in discrete regions. A
segmentation algorithm is employed to ensure that the fibre archi-
tectures generated by the structural optimisation routine are suit-
able for manufacture [10]. Neighbouring elements with similar
material properties are merged into larger zones using a common
set of material parameters (fibre length and orientation, tow size
etc.), controlling the local stiffness of the zone. The size and the
shape of each zone are tailored to suit the fibre deposition process,
so that small areas or patches with small dimensions are avoided.
It is also rational that a critical minimum zone size exists in order
to achieve a representative fibre architecture. The size of the repre-
sentative volume element for achieving a homogeneous distribu-
tion of discontinuous fibres is known to be a function of fibre
length and volume fraction [11,12].

The model has been demonstrated by optimising the bending
performance of a flat plate with three large holes. The deflection
and specific stiffness of the optimised DCFP panel are compared
against benchmarks of a uniformly thick DCFP and steel. Sensitivity
studies are also performed to illustrate the influence of key optimi-
sation parameters on the quality of the final fibre architecture.

The modelling procedure incorporates three key areas including
stiffness optimisation, material assignment and model segmenta-
tion. The optimisation process has been summarised in Fig. 1 and
detailed methodology will be explained in the following sections
for each key area.

2. Stiffness optimisation

The objective of maximising the structural stiffness is equiva-
lent to minimising the total strain energy within the structure
[8]. For an isotropic, homogeneous material under a single load
case subjected to a constant volume constraint, the total strain
energy is minimised when the strain energy density distribution
is uniform through the part [13]. In the present work, a material
such as DCFP introduces an additional design variable; the effective
local modulus, therefore a new stiffness optimality criterion has been
determined to optimise thickness and modulus values concurrently.

With the additional stiffness design variable, a second constraint
is required to determine the limits when updating local modulus
values. Restricting material cost is a sensible approach, since cost
is a function of component stiffness. For example, increasing the
section thickness requires a larger quantity of material to be used,
whilst demanding a higher material stiffness requires an increase
in fibre volume fraction or a smaller fibre tow size [14,15].
The mechanical performance for meso-scale discontinuous fibre
composites is also linked to the homogeneity of the bundle ends
and the number of fibre to fibre contacts [1], therefore utilising
smaller, more expensive tows yields stiffer components.

The optimisation problem can be constructed as

min UðE; tÞ
subject to VðtÞ ¼ V0; CðE; tÞ ¼ C0

and E P Emin; t P tmin

ð1Þ

where E and t denote the modulus and thickness design variables
respectively. U denotes the total strain energy in the structure. V
and C denote the overall volume and material cost of the structure,
and V0 and C0 are the target volume and cost. Emin is the lower

bound of the modulus, which has been taken from the previous
work on discontinuous carbon composites [1], and tmin is the lower
bound for thickness, selected to prevent local buckling of the struc-
ture. The minimum thickness is influenced by the lower modulus
bound, since the stiffness and strength of the component changes
with thickness due to the homogeneity effects [15].

The optimisation process is performed based on the results
from finite element analyses of the structure. The overall strain
energy, component volume and material cost can be individually
expressed as a summation of the corresponding value from each
finite element in the part. The optimality criterion is derived by
solving the Karush–Kuhn–Tucker (KKT) conditions of the Lagrang-
ian expression. The Lagrangian expression from Eq. (1) is

L ¼ U þ k1ðV � V0Þ þ k2ðC � C0Þ þ k3ðEmin � EiÞ þ k4ðtmin � tiÞ ð2Þ

where k1, k2, k3 and k1 are the Lagrange multipliers corresponding
to each constraint. The subscript i denotes the element number.
The stationary of the Lagrangian leads to the following KKT
conditions
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It is not possible to determine one set of Lagrangian multipliers
from Eqs. (3) and (4) alone, since the number of unknowns is
greater than the number of equations. However, one set of possible
solutions can be calculated by choosing arbitrary values for k3 and
k4, such as:
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Consequently Eqs. (3) and (4) can subsequently be rearranged
as:
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An iterative scheme for updating the element modulus can be
derived by multiplying both sides of Eq. (9) by the element modu-
lus E and taking the rth root [16]. Similarly, an iterative scheme for
updating the element thickness can be derived by multiplying both
sides of Eq. (10) by the element thickness t and taking the nth root.
The recurrence relations for modulus and thickness may be written
as:
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