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a b s t r a c t

A solution for a Compact Tension (CT) specimen is proposed in order to obtain the linear elastic fracture
toughness, the stress intensity factor and the compliance at the load line. The solution applies for any ortho-
tropic material whose principal directions are defined by the crack direction, assuming that the crack
grows along the symmetry plane of the specimen. Given two dimensionless parameters, k and q, that
define the orthotropy of the material, the elastic response is unique. With the aid of a parameterized
Finite Element Model (FEM), a solution is obtained for any orthotropic material. The results are fitted into
an interpolating function, which shows excellent agreement with simulated data. Additionally, the initial
crack length required to produce a stable crack growth under displacement control is studied for various
material orthotropies. Finally, some failure criteria are introduced regarding the failure at the holes of the
CT and at the back end face of the specimen. Some design recommendations are given after analyzing the
failure mechanisms.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When Linear Elastic Fracture Mechanics (LEFM) were first
developed, metallic materials were the most widely used in indus-
try and this remains the case today. Since metals are considered to
be mainly isotropic, most standardized methods [1–4] for obtain-
ing the fracture properties, such as the critical fracture energy GIc

or the stress intensity factor (SIF) KIc are developed considering
isotropic materials. Despite this, most of the other materials used
in industrial applications are anisotropic in nature. Woods and
advanced materials, such as fiber reinforced composites, have been
used increasingly in recent years. Such materials are far from sat-
isfying the expectations of isotropy and, therefore, current stan-
dardized methods cannot be applied [5–7]. This situation means
new tools and procedures need to be developed in order to mea-
sure the fracture properties of anisotropic materials.

From an LEFM point of view, and assuming that there are no
inelastic energy dissipation mechanisms (except for those occur-
ring at the crack tip), the critical fracture toughness can be seen
as the elastic Energy Release Rate (ERR) per new unit area created.
In the case of the CT specimen, the crack length is normalized as
�a ¼ a=w, where a is the crack length measured from the load appli-
cation point and w is the span between the load point and the back
end face of the specimen, as seen in Fig. 1. Even though the
standard CT specimen has a normalized size of w ¼ 51 mm, the

formulation and the methodology here presented can be used for
other sizes of w as long as the CT geometry is respected. With
the principal directions defined as x1 parallel to the loading direc-
tion and x2 aligned to the symmetry plane, and assuming that the
crack grows along the x2 direction, a unique relation between the
specimen compliance (C) and the normalized crack length exists.
When this relation is known, it is possible to infer the crack length
from the experimental compliance curve and, in conjunction with
the load - load application point displacement (Pi–ui), it is possible,
ultimately, to obtain GIc or KIc . This procedure cannot be applied if
the crack does not propagate along the x2 direction, as occurs in the
case of some composite materials where the majority of the plies
are aligned in a direction different to x2 [8].

Up to now, the general function Cð�aÞ has only been obtained for
isotropic materials [3,4]. For other types of anisotropy, current
methods involve optically measuring the crack tip length during
the test [7], measuring the crack tip location with the aid of the
Digital Image Correlation technique [6], or the use of a Finite Ele-
ment Method program [5,6,9]. Using the SIF isotropic solution on
orthotropics materials can lead to significant error. For example,
when computing the KI of a T300/913 carbon epoxy cross-ply com-
posite material with a laminate sequence of ð90;0Þ8s with the stan-
dard isotropic solution, an error of 11% results with respect to that
obtained by a FEM model, taking into account the orthotropy of the
laminate [9]. The aim of this paper is to obtain analytical expres-
sions of the linear elastic fracture toughness, the stress intensity
factor and the compliance of the CT geometry while taking into
account the orthotropy of the material. It is important to note that
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the same methodology described here may be used to determine
the compliance and SIF functions of other specimen geometries,
although the equations and results presented are only valid for
the geometry of Fig. 1.

Expressions such as the ones presented here are useful to obtain
GIc or KIc from experimental results. As previously stated, they can
be found in many Fracture Mechanics handbooks [3,4] and in stan-
dardized procedures [1,2] only for the isotropic case. Obtaining the
expressions for the orthotropic case may improve the level of stan-
dardization on how to obtain fracture properties of non-isotropic
materials, instead of computing a particular FEM solution for every
different material that needs to be tested. Also, in some cases, an
explicit expression of the SIF in terms of the crack length is needed
when solving more complicated Fracture Mechanics problems,
such as crack-bridging models and cohesive models. A linear FEM
is not enough to solve this type of problems, and non-linear consti-
tutive models are needed, which require high computational time
and resources. The use of explicit expressions, like the ones pre-
sented in this paper, can help to reduce the computing times
drastically.

This paper is structured as follows: Section 2 defines the stress
field of a planar orthotropic solid as a function of two dimension-
less parameters, k and q, which define the orthotropy of the mate-
rial. Section 3 presents the procedure and assumptions of the FEM
models. Section 4 contains a parametric function of the compliance
and the SIF for a wide range of orthotropies. In Section 5, the sta-
bility of the crack growth is studied from a linear elastic point of
view. Section 6 presents some design recommendations based on
the proposed material failure criteria. Finally, Section 7 summa-
rizes the conclusions and describes the relevance of this work.

2. Stress field of a planar orthotropic solid

In a bi-dimensional problem defined by the x1–x2 plane, the
stress state of an elastic body with its boundary conditions (BCs)
prescribed only by tractions depends solely on the BCs, the geom-
etry and two dimensionless parameters that define the anisotropy
of the material [10]. Consequently, for any given isotropic material,
these values remain constant and, therefore, the stress state does
not depend on the material. This property of the stress state means
it is relatively simple to generate Cð�aÞ and stress intensity factor
curves.

Given a general anisotropic material with a linear constitutive
relation, in a bi-dimensional problem, the stress–strain relation
can be expressed as:

ei ¼
X

j¼1;2;6

bijrj; i ¼ 1;2;6 ð1Þ

where:

bij ¼
sij; for plane stress
sij � si3sj3=s33; for plane strain

�
i; j ¼ 1;2;6: ð2Þ

It is known that for any anisotropic material, the solution of the
differential equation that defines the stress state depends on the
roots of the characteristic polynomial [10]:

b11p4 � 2b16p3 þ ð2b12 þ b66Þp2 � 2b26pþ b22 ¼ 0 ð3Þ

with four complex roots in p. If the material is orthotropic with the
principal directions x1–x2 defined by the principal axes of the mate-
rial, only four independent elastic constants are needed:
b11; b12 ¼ b21; b22 and b66, since b16 ¼ b26 ¼ 0. Hence, Eq. (3) is
reduced to:

kp4 þ 2q
ffiffiffi
k
p

p2 þ 1 ¼ 0 ð4Þ

where p1 and p2 are the roots with positive imaginary parts and:

k ¼ b11

b22
; q ¼ 2b12 þ b66

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11b22

p ð5Þ

In the plane stress case, k and q are expressed as:

k ¼ E22

E11
; q ¼

ffiffiffi
k
p

2G12
E11 � 2m12G12ð Þ ð6Þ

where E11 and E22 are the elastic moduli, G12 is the shear modulus,
and m12 is the Poisson’s ratio. In the plane strain case, k and q are
obtained by replacing E11; E22 and m12 in Eq. (6) by:

E011 ¼
E11

1� m13m31
; E022 ¼

E22

1� m23m32
; m012 ¼

m12 þ m13m32

1� m13m31
ð7Þ

To ensure the positive definiteness of the strain energy, it must
be ensured that:

k > 0 and q > �1 ð8Þ

The anisotropy of the material is easily described by the param-
eters k and q. For an isotropic material, the parameters take the
values k ¼ q ¼ 1. However, for a cubic material, it only needs to
be ensured that k ¼ 1 and that q – 1. Table 1 contains the values
of k and q for a number of materials. From the point of view of
composite laminates, the laminate anisotropy is determined by
the lay-up sequence; an in-plane isotropic lay-up may have its
principals axes oriented in any direction by definition. Some exam-
ples of laminate sequences that satisfy this condition are
½0;�60�s; ½0;�45;90�s or ½0;�36;�72�s. On the other hand, cubic
materials have a principal axis every 45�. An example of cubic lam-
inate sequence is a cross-ply laminate.

Fig. 1. Compact Tension (CT) specimen geometry, with all dimensions defined with
respect to the size w, where the dashed line represents the crack path.

Table 1
Values of k and q for seven different materials.

Material k q

T300/920 unidirectional lamina [19] 0.0657 3.7326
T300/920 ½0;�60�s isotropic 1.0 1.0
T300/920 ½0;90�s cubic 1.0 7.9302
Western White Pine wood [20] 0.0380 1.9635
Northern White Cedar wood [20] 0.0810 0.6642
Cu (FCC) [21] 1.0 0.03
Fe (BCC) [21] 1.0 0.20
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