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a b s t r a c t

Limiting fibre breakage during composite processing is a crucial issue. The purpose of this paper is to pre-
dict the evolution of the fibre-length distribution along a twin-screw extruder. This approach relies on
using a fragmentation matrix to describe changes in the fibre-length distribution. The flow parameters
in the screw elements are obtained using the simulation software Ludovic�. Evolution of an initial
fibre-length distribution for several processing conditions was computed and the results were compared
with experimental values. The computation gives satisfying results, even though more comparisons with
experiments would be necessary.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A classical use for glass fibres in industry is thermoplastic poly-
mers reinforcement, mostly for injected parts. Long-fibre compos-
ites are known to offer better mechanical properties than short-
fibre ones. Consequently, an important point is to preserve as
much as possible long fibres during compounding, despite strong
flow conditions, eventually leading to severe break-up.

Fibre orientation for long-fibre thermoplastics in moulding pro-
cess has already been studied and modelled [1–4] and a quantita-
tive model predicting changes in fibre-length distribution during
mould filling has been recently developed by Tucker et al. [5].
However, prior to injection moulding, other processes are used to
compound glass fibres into polymer matrices. An important issue
is thus to control fibre lengths in these processes to subsequently
inject compounds exhibiting a suitable final length distribution.
The most common of these processes is twin-screw extrusion, in
which considerable fibre length degradation occurs [6–8]. Shon
et al. [9] have been the firsts to develop an empirical model
describing the average fibre length evolution in different continu-
ous processes, including twin-screw extrusion. More recently, this
approach was improved to calculate average fibre length evolution
during twin screw extrusion and Buss kneader compounding [10–
11]. However, these methods do not provide information on the

whole fibre-length distribution. Therefore, the aim of the present
paper is to propose a computational method to predict changes
in the fibre-length distribution along a twin-screw extruder.

2. Theoretical model

2.1. Forgacs and Mason model

Our model is based on the assumption that fibre breakage is
only due to flow-induced buckling, as described by Forgacs and
Mason [12]. According to this model, a rotating rigid fibre in a
shear flow may break when oriented in the direction of compres-
sive forces. Beyond a critical force, which depends on its mechan-
ical properties and length, the fibre buckles and then breaks-up
(Fig. 1). Breakage occurs because of the severe tensile stress rs in-
duced on the external surface of the fibre when it is bending. This
stress depends on the fibre radius b, its Young modulus E and the
local radius of curvature R:

rsðxÞ ¼ �
Eb

RðxÞ ð1Þ

where x is the abscissa along the fibre principal axis. When the
stress rs on the surface reaches the tensile strength value of the fi-
bre rc, the fibre breaks-up. As the radius of curvature of the fibre is
linked to the fibre deformation, the breakage phenomenon directly
depends on this deformation. In this work, it was assumed that,
when buckling occurs, the fibre systematically breaks-up because
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of the resulting huge deformation. This assumption is validated in
Section 2.3.

2.2. Jeffery equation

To determine when buckling (and then breakage) occurs, forces
applied on the fibre as well as fibre orientation must be computed.
Classically, the orientation P of a single ellipsoidal fibre of length
2a and radius b in a shear flow is obtained by solving Jeffery equa-
tion [13]:

_P ¼ X � Pþ k½ _e : P� ð _e : P� PÞP� ð2Þ

where P is the orientation vector of the fibre principal axis, X the
vorticity tensor, _e the strain rate tensor, and k a parameter related
to the aspect ratio b = a/b:

k ¼ b2 � 1
b2 ð3Þ

The orientation vector P describes the fibre orientation in the
reference frame. In the case of simple shear flow, this frame is de-
fined as depicted in Fig. 2. This orientation can also be described by
the angles h and / (which can be determined from P). As glass fi-
bres are cylindrical, the ellipsoid aspect ratio b should be replaced
in Eq. (3) with an equivalent aspect ratio be for cylinders, theoret-
ically determined by Burgers [14]:

be ¼ 0:74b ð4Þ

The orientation vector was then used in the forces computation.
The shear induced force FB, integrated on a half-fibre, was given by
Burgers [14], without further indication on the forces distribution f
along the fibre:

FB ¼ �
Z 0

a
f ðxÞ dx ¼ Mpg _ca2

lnð2bÞ � 1:75
ð5Þ

where g is the viscosity and _c the shear rate. M is defined as:

M ¼ sin2 h sin / cos / ð6Þ

where h and / were obtained from the orientation vector P. In a
more convenient form, Eq. (5) can be written in terms of stress:

rB ¼ g _cM
b2

lnð2bÞ � 1:75
ð7Þ

In order to determine when buckling occurred, forces were as-
sumed to be punctually applied at fibre ends. Then, it was possible
to obtain the buckling threshold by applying Euler buckling
method.

2.3. Euler buckling method

In order to confirm that perfect (without any defect) rigid fibres
cannot break-up when simply bending below the buckling thresh-
old (in the case of small deformations) and also always break-up
when buckling, the tensile stress rs applied on the external surface
of the fibre when it bends (below the buckling threshold: small
deformation) and when it buckles (over the buckling threshold:
large deformation) must be computed. In this way, the tensile
stress rs can be compared to the tensile strength rc in order to
check if the fibre does break. Compressive forces were supposed
to be only applied at fibre ends and along its principal direction.
The bending momentum balance for a non-deformed configuration
gives:

M0ðxÞ ¼ FByðxÞ ð8Þ

where M0(x) is the bending momentum and y(x) the fibre deflection
at point x. From this equation, the deformation below the buckling
threshold (assuming that there exists an initial deflection at rest)
and beyond the buckling threshold can be obtained. First, the buck-
ling threshold was calculated under the assumption of ‘‘small’’
deformations (Euler buckling method), in which the bending
momentum M0 is approximated by:

M0 ¼
EI
R
� EIy00 ð9Þ

where I is the moment of inertia and R the radius of curvature. Com-
bining Eqs. (8) and (9) leads to the differential equation:

y00 þ k2y ¼ 0 ð10Þ

with k2 ¼ � 4
b2

rB
E . The only possible non trivial solution satisfying

the homogenous boundary conditions (y(a) = 0 and y0(0) = 0) is:

y ¼ A cosðkxÞ ð11Þ

with k ¼ p p
2 a and p is a strictly positive integer. Considering that

the fibre is brittle, and assuming that it breaks when it reaches its

Fig. 1. Rotating fibre in a shear flow. Break-up occurs when the maximum flow-induced compressive force is high enough.

Fig. 2. Fibre end orbit in a simple shear flow. The shear plan frame (x0 , y0 , z0) is
translating with the fibre. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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