

Comprehensive analytic solutions for the geometry of symmetric constant-wall-thickness scroll machines

Ian H. Bell^{a,*}, Eckhard A. Groll^b, James E. Braun^b, W. Travis Horton^b, Vincent Lemort^a

^a University of Liège, Energy Systems Research Unit, Liège, Belgium ^b Purdue University, Department of Mechanical Engineering, West Lafayette, IN 47906, USA

ARTICLE INFO

Article history: Received 17 March 2014 Received in revised form 2 May 2014 Accepted 31 May 2014 Available online 11 June 2014

Keywords: Scroll compressor Scroll expander Geometry

ABSTRACT

In this work, a comprehensive framework and geometric solutions are presented for the most common type of scroll machine, the symmetric constant-wall-thickness scroll compressor based on the involute of a circle. This analytic treatment comprises solutions for the volume, derivative of volume, centroid, normalized force and moment parameters, and leakage areas for all chambers in the machine. The representations for the centroid and area are based on Green's Theorem analysis which allows for general solutions that can then also be applied to other machines. Analytic solutions are also presented for the discharge geometry corresponding to arc-line-arc, perfect-meshing-profile, one-arc, and two-arc discharge geometries. Each of the derived parameters is validated against numerical solutions based on polygons. Source code in the Python programming language is provided for the analytic derivations as well as the implementation of each of the analytic outputs.

© 2014 Elsevier Ltd and IIR. All rights reserved.

Solutions analytiques générales pour la géométrie des machines à spirale à épaisseur de paroi constante

Mots clés : Compresseur à spirale ; Détendeur à spirale ; Géométrie

1. Introduction

The scroll machine was first proposed by Léon Creux (1905) in 1905, but it would be many decades before scroll compressors

would see practical application due to the manufacturing challenges posed by the involutes.

A significant amount of literature exists which deals with the geometric modeling of scroll compressors. Morishita and Sugihara (1984) produced one of the first complete

^{*} Corresponding author.

E-mail addresses: ian.bell@ulg.ac.be, ian.h.bell@gmail.com (I.H. Bell), groll@purdue.edu (E.A. Groll), jbraun@purdue.edu (J.E. Braun), wthorton@purdue.edu (W.T. Horton), vincent.lemort@ulg.ac.be (V. Lemort). http://dx.doi.org/10.1016/j.ijrefrig.2014.05.029

^{0140-7007/© 2014} Elsevier Ltd and IIR. All rights reserved.

Nomenclature		Subscript	Subscripts	
		a	Axial	
Variables		a1	Discharge arc 1	
А	Area (m²)	a1,1	Discharge arc 1 point 1	
Ã	Area contribution (m ²)	a1,2	Discharge arc 1 point 2	
b_l	Intercept of line	a2	Discharge arc 2	
d	Distance (m)	a2,1	Discharge arc 2 point 1	
f	Anti-derivative for force	a2,2	Discharge arc 2 point 2	
F	Force vector (N)	a2,max	Maximum for discharge arc 2	
h	Height of scroll (m)	b	Base (generating)	
Gr	Anti-derivative for area (m ²)	disp	Displacement	
î	Unit vector in $+x$ direction	D	Downstream	
ĵ	Unit vector in +y direction	0	Orbiting	
L	Length (m)	0	Initial	
L	Green's theorem function	S	Starting	
М	Green's theorem function	е	Ending	
m_l	Slope of line	f	Fixed scroll	
М	Moment (N m)	f—o	From fixed to orbiting scroll	
n	Unit normal vector	is	Inner involute starting	
N _{c1}	Number of c1 chambers	OS	Outer involute starting	
N _{c2}	Number of c2 chambers	ssa	Suction separation	
N _{c,max}	Number of pairs of compression	fi0	Fixed scroll inner involute initial	
	chambers	fis	Fixed scroll inner involute starting	
р	Pressure (Pa)	fie	Fixed scroll inner involute ending	
r	Radius (m)	fo0	Fixed scroll outer involute initial	
t	Parameter for parameterization	fos	Fixed scroll outer involute starting	
ts	Scroll thickness (m)	foe	Fixed scroll outer involute ending	
и	Solution value for ϕ_{ssa} (rad)	I	Inner for chamber	
Δx	Difference in x coordinate (m)	k,fi	Conj. pts. fixed scroll inner involute	
Δy	Difference in y coordinate (m)	k,fo	Conj. pts. fixed scroll outer involute	
х	Cartesian coordinate (m)	k,oi	Conj. pts. orb. scroll inner involute	
x	Centroid coordinate (m)	k,00	Conj. pts. orb. scroll outer involute	
у	Cartesian coordinate (m)	max	Maximum	
y	Centroid coordinate (m)	min	Minimum	
α	Angle in discharge curve calculation (rad)	om	Overturning moment	
α	Index of compression chamber pair	o1	Arc 1 on orbiting scroll	
β	Angle in discharge curve calculation (rad)	o2	Arc 2 on orbiting scroll	
δ	Solution value for ϕ_{ssa} (rad)	o—f	From orbiting to fixed scroll	
ϕ	Involute angle (rad)	oiO	Orbit. scroll inner involute initial	
θ	Crank angle (rad)	ois	Orbit. scroll inner involute starting	
θ_d	Discharge angle (rad)	oie	Orbit. scroll inner involute ending	
Θ	Shifted orbiting angle ($\Theta=\phi_{fie}- heta-\pi$ /2)	000	Orbit. scroll outer involute initial	
	(rad)	00S	Orbit. scroll outer involute starting	
ϖ_a	Parameter for $r_{a2,\max}$	00e	Orbit. scroll outer involute ending	
V	Volume (m ³)	0	Orbiting scroll	
V_{ratio}	Built-in volume ratio	0	Outer for chamber	
$\delta_{ m radial}$	Radial gap width (m)	r	Radial	
		t	Tangential	
Supersci	-	U	Upstream	
/	Line segment	х	x-component	
\cup	Arc of circle	у	y-component	
G	Involute	0	Spinning	

analyses of the scroll compressor including geometry and dynamics. Yanagisawa et al. (1990) constructed a full geometric model based on the foundation set by Morishita. More treatment of the scroll geometry is available from Halm (1997). One of the major shortcomings of Halm's model is that the derivation is based on particular values for the initial angles of involute. Wang et al. (2005) noted this problem and carried out derivations for the scroll chamber

Download English Version:

https://daneshyari.com/en/article/789357

Download Persian Version:

https://daneshyari.com/article/789357

Daneshyari.com