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a  b  s  t  r  a  c  t

Inspection  of  corroded  engineering  components  is  vital  for  ensuring  safety  throughout  the  lifetime  of
infrastructure.  However,  full inspection  can  be infeasible  due  to time  constraints,  budgetary  limits  or
restricted  access.  Subsequently  there  is growing  interest  in  partial  coverage  inspection  (PCI) techniques
which  use  data  from  the inspection  of  a limited  area  to assess  the  condition  of  larger  areas  of  a  component.
Extreme  value  analysis  (EVA)  is a tool  for PCI,  it allows  an  inspector  to build  a  statistical  model  of the
smallest  thicknesses  across  a component.  Construction  of  extreme  value  models  relies on  the selection  of
the smallest  thicknesses  from  the inspection  data.  Current  methodologies  rely  on  the  judgement  of  the
analyst  to  select  sets  of thickness  minima  and  frequently  the inspection  data  is  not  checked  to ensure  that
the  assumptions  made  by  EVA  are reasonable.  Consequently,  the  resulting  models  can  be  subjective  and
can provide  inadequate  models  for extrapolation.  In this  paper,  a  framework  for building  extreme  value
models  of  inspection  data  is  introduced.  The  method  selects  a sample  of  thickness  minima  such  that  the
data  is  compatible  with  the  assumptions  of  EVA.  It  is shown  that  this  framework  can  select  a  suitable  set
of minima  for  a large  number  of correlated  exponential  and  Gaussian  surfaces  and  the  method  is  tested
using  real  inspection  data collected  from  an ultrasonic  thickness  C-scan  of  a  rough  surface.

©  2015  The  Authors.  Published  by Elsevier  Ltd. This  is an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Corrosion costs the petroleum industry in the United States of
America around $8 billion per annum[1]. Accurate assessment and
tracking of corrosion related degradation is vital to ensure smooth
operation of facilities and to prevent accidents [2]. The condition
of a facility is assessed using regular inspections performed by
experienced and independent contractors. Often regular shut down
periods are scheduled to allow for these inspections, some of which
require access to hazardous areas of the plant. Furthermore, despite
all efforts full inspection is not always possible because of access
problems (other plant components concealing the area, scaffolding
or excavation required for the inspection), time constraints in shut
down periods and limited inspection budgets.

Risk based inspection (RBI) strategies are becoming common-
place in asset management [3]. Certain areas are more safety
critical or degradation mechanisms (such as corrosion) are known
to be more aggressive in particular parts of the plant. These areas
are considered at higher risk than others. Therefore, to be most
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economical, asset owners prioritise inspections in these sample
areas. Sometimes inspectors can only access a fraction of these
areas. In this situation partial coverage inspection (PCI) can be
used to estimate the worst case damage in the whole structure
based on the data that is available. PCI builds a statistical model
of the condition of an inaccessible area using the inspection data
from accessible areas of a component (an example thickness map
is shown in Fig. 1a) which are exposed to the same operational
and environmental conditions. This approach is attractive as it
has the potential to estimate the condition of very large areas of
a component using small samples of data. The technique can be
applied to data from conventional inspection techniques such that
all existing sensing technologies can be used.

Examples of applications of PCI to real ultrasonic thickness
inspection data can be found in Stone [4]. Stone calculated the
empirical cumulative distribution function (ECDF) of thickness
measurements collected as part of real inspections (an example of
which is shown in Fig. 1b). The ECDF is an estimate of the probability
of measuring a thickness of a given value, which can be interpreted
as the fraction of the area with a thickness of less than a given value.
For example, if an ECDF gave an estimate of probability of 0.1 for
a thickness measurement, then 10% of the component area would
have a thickness smaller than this. Stone shows that the estimates
of probabilities of the thickness measurements calculated from
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Fig. 1. (a) An example thickness map  of a correlated Gaussian surface with RMS  height 0.2 mm and correlation length 2.4 mm,  showing the position of each measurement
with  each point colour coded proportional to its magnitude. (b) The empirical cumulative distribution function calculated from the Gaussian thickness map. The ordinate
axis  shows the probability of measuring a thickness of less than the corresponding value on the abscissa. (c) An example thickness map of a correlated exponential surface
with  RMS  height 0.2 mm and correlation length 2.4 mm (d) The empirical cumulative distribution function calculated from the exponential thickness map.

different inspections of the same area can be very different [4].
These variations lead to different estimates of the fraction of the
area of the component covered by the smallest thickness measure-
ments. In order to build an accurate picture of the condition of the
uninspected area one needs to take into account the variation which
arises from sampling the smallest thickness measurements.

A key part of this problem is that an inspector only has
access to data from a small inspected area. In this area, there
is only one minimum thickness, which does not provide enough
information to build a model of the smallest thicknesses. An
inspector can generate a sample of the smallest thickness mea-
surements by partitioning the inspection data into a number
of equally sized blocks. In each block the minimum thickness
is recorded. This set forms a sample of the smallest thickness
measurements. From this sample, one can build a model which
takes into account the variations of the smallest thickness mea-
surements. Extreme value analysis (EVA) provides a limiting
form for this model. It states that, if the underlying thickness
measurements in each block are taken from independent and
identical distributions, then the sample of minimum thickness
measurements will follow a generalized extreme value distribution
(GEVD).

The GEVD makes it possible to calculate the probability of mea-
suring a minimum thickness of less than a given value. This has
inherent value to both the plant operator and the inspector. The
model allows the inspector to report both the smallest thickness
they have found and a probability of finding a minimum thickness
less than this value in the uninspected areas of the structure. Poten-
tially, a plant operator can make decisions about inaccessible areas

of a plant. For example, Schneider used EVA to model the condi-
tion of an inaccessible area of a pipework system on an oil platform
[5]. EVA allowed Schneider to calculate estimates of the probability
of future leaks in the inaccessible area based on inspections of the
accessible area. Kowaka and Shibata give similar examples of the
application of EVA, ranging to generating a probability distribution
for pit depths in steel piles in sea water to calculations of the most
likely maximum pit depth in an oil tank [6,7].

The problem with existing applications of EVA to corrosion data
is that the analysis is dependent on the judgement of the analyst
and does not necessarily check that the data is suitable for EVA
(i.e. they do not check that there is evidence the assumptions made
by EVA are fulfilled). For example existing methods for selecting a
suitable block size have focussed on examining the fit of the GEVD
to the set of minima selected using that block size. Glegola selected
a block size by extracting sets of thickness minima using multi-
ple block sizes [8]. For each set of minima the quality of the fit to
the GEVD was examined and the block size which gave the best
fit to the GEVD was used for the analysis. Another example is the
work by Schneider, who  selected a block size to ensure that the
minima from each block were independent [5], however he did not
confirm the identicalness of the distributions in each block. Schnei-
der examined the two dimensional autocorrelation function of the
thickness map  and chose a block size, L, such that thickness mea-
surements separated by L were weakly correlated. In contrast to
Glegola’s method this approach chooses a block size based on one
of the assumptions of EVA.

However, in addition to the independence of thickness mea-
surements, EVA also assumes that that probability distribution of
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