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A new Bayesian methodology for the analysis of external corrosion data of non-piggable underground
pipelines has been developed. It allows for the estimation of the statistical distributions of the density
and size of external corrosion defects from corrosion data samples taken at excavation sites along the
inspected pipeline and can incorporate the detection and measurement errors associated with field
inspections. Corrosion data obtained from field inspections of an upstream pipeline and from an in-line
inspection of a transportation pipeline are used to illustrate and validate the proposed methodology.
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1. Introduction

Bayesian Data Analysis (BDA) has been used in the last decade
with varying degrees of success in the assessment of corrosion data
for upstream and transportation pipeline systems [1-25]. Previous
applications of BDA include identification of risk factors in corrod-
ing pipeline systems [1-3], characterization of corrosion defect
depth growth [4] and estimation of corrosion rate in operating
pipelines [5-12], determination of the sample size required to
estimate extreme pit depth in pipelines [13,14], degradation quan-
tification through External Corrosion Direct Assessment (ECDA)
[15-19], calibration of in-line inspection (ILI) tools [20,21], identifi-
cation of failure type in corroded pipelines [22], updating of long-
term corrosion estimates of corrosion-fatigue degradation [23,24],
and modelling of high pH stress corrosion cracking in underground
pipelines [25]. Other structural reliability fields have also profited
from the application of Bayesian corrosion data analysis [26].

The main advantage of BDA with regard to corrosion data anal-
ysis is that, from a prior belief in the parameters that describe the
distributions of corrosion defect size and density, and a relatively
small amount of field data, reasonably accurate predictions can be
made about the actual distributions of these corrosion parameters.
This unique feature is of great interest in the evaluation of the
damage caused by external corrosion in underground, non-piggable
pipelines, for which the prediction of the size and spatial
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distribution of active pits remains a very complex task; commonly
carried out using small corrosion data samples that feed statistical
models such as Extreme Value Statistics [27-29].

The application of BDA in the evaluation of degradation caused
by corrosion in non-piggable, underground pipelines has been
commonly incorporated into ECDA frameworks [15-19]. The role
of BDA in this synergy has traditionally been the estimation of
the probability of detection (POD) of the inspection tools, and the
estimation of the density (defects per unit length) and depth of
active corrosion defects. The main drawbacks of these approaches,
which continue limiting the extended application of BDA to
corrosion analysis, are the relative complexity of the employed
mathematical frameworks and the lack of a thorough description
of the implementation details of these schemes (see, for example,
[14,15]). There is also a lack of BDA tools for the analysis of field-
gathered corrosion data obtained through (random) sampling of
non-piggable, underground pipelines.

In this paper, a new BDA methodology is proposed, illustrated
and validated for the assessment of external corrosion data
obtained from field sampling inspections of non-piggable, under-
ground upstream pipelines. The goal of this methodology is the
estimation of the statistical distributions of the density and size
of external corrosion defects from a relatively small number of cor-
rosion data randomly taken at excavation sites along the pipeline.
The results of a previous field study of external corrosion in differ-
ent upstream pipeline systems in Southern Mexico [30] are used to
suggest the prior, likelihood, and predictive models of the Bayesian
analysis. The Bayes rule is used to determine the posterior distribu-
tions of the parameters defining the distributions of the density,
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depth and length of the corrosion defects in the pipeline. The pre-
dictive distributions of these corrosion descriptors for the unob-
served defects in the entire pipeline are obtained by averaging
out the uncertainty in the estimated parameters. The proposed
methodology has been validated using corrosion data obtained
through ILI and also from data obtained by field inspection of cor-
roding pipelines operating in the same region.

2. Theoretical foundations
2.1. Bayes’ theorem

Bayes’ theorem lies in the core of any BDA! [31]. In it, the
strength of belief in parameter values 6 before any data is observed
(prior distribution 7(0)) is combined with the joint probability that
the observed data (X) follows the chosen model with parameter val-
ues 0 (sampling distribution or likelihood function L (X|0)) to pro-
duce the strength of belief in parameter values 6 when the
observed data X have been taken into account (posterior distribution
P,(0]X)). It is important to underline that 6 and X represent a vector
of parameter values {6;} and a vector of measured data points {x;},
respectively.

In its continuous form, Bayes’ theorem is written as [31]

L(X]0)7(6)

Po(01X) = 1o LX10)m(0)do (1)

where @ represents the space for 6, while the marginal likelihood
Jo L(X|0)7(0)d6 (also known as evidence) denotes the probability
that the data follow the chosen model under marginalization over
all parameter values.

If the evidence is thought as a normalization factor, Eq. (1) can
be written as [31]

Po(01X) o L(X|0)7(0) (1a)

Therefore, P,(0|X) can be computed using expression (1a) and then
normalized under the requirement that it is a probability density
function (pdf). This approach, used throughout this work, consider-
ably reduces the computational workload associated with BDA.

If the prior distribution of a given parameter 0; is described by
the vector of parameters «, then it is said that {a} are the hyper-
parameters of 6;> For the general case where hyperparameters are
considered, expression (1a) is written as

Po(01X, o) x L(X]0)T(0)ot) (1b)

2.2. Bayesian prediction

Once the posterior distribution of 0 is estimated using expres-
sion (1b), it is possible to make a prediction of the probability of
new unobserved data values, conditional on the observed data X
and hyperparameters a. If the data is assumed to have a distribu-
tion M (note that M is also used to construct the sampling distribu-
tion or likelihood function), then it is possible to predict the
predictive distribution P,(X|X,a) of the unobserved data points
by averaging out the uncertainty in 0. This is achieved by margin-
alizing P,(0|X, a) over 0 [31]:

Po(XIX, ) = / M (X|0)P,(0X, 2)d0 )

! Bayesian Data Analysis is used in the text to encompass other commons terms
such as Bayesian inference, Bayesian updating, Bayesian probability and Bayesian
statistics [31].

2 For example, if the failure rate (/) of an exponentially distributed variable has a
Gamma prior distribution with scale ¢ and shape { parameters, then the hyperpa-
rameters of 0 = {4} are « = {a, {}.

3. BDA framework
3.1. Variables of interest

In order to apply BDA to corrosion data, the generic formulation
used in the preceding section must be translated into a practical,
corrosion-specific formulation involving the corrosion variables,
distributions, and parameters to be investigated.

The variables of interest in this study are the depth (d), length
(¢), and density (n) of the corrosion defects; the latter in defects
per excavation site. The models for the data (M), sampling (L),
and prior (7) distributions of these variables were proposed from
their empirical distributions, which were obtained in an extensive
field survey conducted in Southern Mexico over a 7-yr period from
2005 to 2012 [30]. During the field work, corrosion data were gath-
ered at randomly selected ditch sites in five gathering/upstream
pipeline systems, totalling 964 km and 620 pipelines. In each one
of the 16,636 excavated sites, the depth, length, and number (per
site) of the observed external corrosion-caused metal losses were
recorded; these variables were obtained for a total of 13,286 exter-
nal corrosion defects. The field reports also included the trench
length and the age, coating type and condition, diameter, wall
thickness (pwt), steel grade, and operating pressure of the
inspected pipeline [30].

The empirical distributions of the depth and length of the
observed external corrosion defects were found to be better
described by the Generalized Extreme Value (GEV) distribution,
whose pdf is given by the expression [32]:

forv(®) = { : exp{ 1+ “)]71/5}[1 + C(%)TH/E (#0
7 exp {— () —exp [- (9]}, (=0
3)

where {, ¢, and pu are the shape, scale, and location parameters,
respectively.

The location (u), scale (o), and shape ({) of the GEV distributions
fitted to the measured vectors of data points for the depth, D = {d;},
and length, A = {¢;}, of the observed defects are given in Table 1.

The number n of defects per (2.44 m-long) excavation site was
fitted to a Negative Binomial (NegBin) distribution with parame-
ters p and 7. The probability mass function (pmf) of n, a nonnega-
tive integer, is [32]

Fustn) =

n+n-—
n-1

It is worth noting that, in this study, # is a positive real-valued num-
ber. This kind of generalization is known as Gamma-Poisson mix-
ture or Pdlya process [33]. The reasons behind the choice of this
form of the NegBin are given and justified in a separate paper under
preparation. The parameters of the NegBin distribution fitted to the
measured vector of data points of defect density, N = {n;}, are also
given in Table 1.

1)p"(1 py (3a)

3.2. Posterior distributions

Although a certain degree of physical dependence is to be
expected to occur between the depth, length, and density of corro-
sion defects [34], the mathematical burden associated with consid-
ering such dependence in a BDA could render it intractable. A key
point to make the present BDA as conceptually simple and easy to
implement as possible is that these variables can be treated as sta-
tistically independent. This approach is not new and has been used
by other authors [35,36]. The independence assumption can also
be made for the parameters of the corrosion data distributions
without incurring in significant errors. Under such assumption,
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