Corrosion Science 82 (2014) 85-92

Contents lists available at ScienceDirect

Corrosion Science

journal homepage: www.elsevier.com/locate/corsci

Influence of tungstate ions on transformation of green rust to ferric oxyhydroxide via aqueous solution investigated by *in situ* X-ray absorption spectroscopy

S. Fujieda^{a,*}, A. Yoshino^a, K. Shinoda^a, S. Tsuri^b, S. Suzuki^a

^a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan ^bJFE Steel Corporation, Steel Research Laboratories, Japan

ARTICLE INFO

Article history: Received 1 July 2013 Accepted 7 January 2014 Available online 18 January 2014

Keywords: B. XANES B. EXAFS C. oxidation A. iron

ABSTRACT

Influence of tungstate ions on the transformation of chloride-containing green rust (GR(Cl⁻)) to fine goethite (α -FeOOH) particles due to the oxidation reaction via aqueous solution at about 300 K was investigated by *in situ* measurements of X-ray absorption spectra. Results showed that the transformation rate of GR(Cl⁻) in the suspension containing 5 mol% W was lower than that in the suspension without tungstate ions. Almost all tungstate ions in the suspension were adsorbed on GR(Cl⁻) and α -FeOOH. It is probable that the adsorption of tungstate ions reduces the transformation rate of GR(Cl⁻) and also leads to the precipitation of fine particles.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Weathering steels are used for various structures such as bridges because of their superior corrosion resistance properties. To elucidate the corrosion resistance mechanism of weathering steels, a number of studies have been performed on the characterization of the oxidation products formed on the weathering steels [1–3]. Results have shown that a dense covering layer composed of fine goethite (α -FeOOH) particles acts as a barrier against oxidation, though the oxidation products formed on weathering steels contain not only α -FeOOH but also akaganeite (β -FeOOH), lepidocrocite (γ -FeOOH), and magnetite (Fe₃O₄) etc. [4,5]. However, the corrosion resistance of weathering steels under a chloride environment is not so high [6]. As chloride contamination is common in various environments, improvement of their corrosion resistance under a chloride environment is industrially desirable. It is important to investigate the formation mechanism of fine α -FeOOH particles under a chloride environment.

Green rusts (GRs) are known as intermediate products when corrosion products are formed on metallic Fe in aqueous solution [7–9]. GRs are classified as iron hydroxides containing ferric (Fe(III)) and ferrous (Fe(II)) ions. By reaction with dissolved oxygen, they are decomposed in aqueous solution and then the iron oxyhydroxides and/or iron oxide such as α -FeOOH, β -FeOOH, γ -FeOOH and/or Fe₃O₄ are precipitated [10]. Such transformation of GRs

* Corresponding author. *E-mail address:* fujieda@tagen.tohoku.ac.jp (S. Fujieda). due to the oxidation reaction via aqueous solution has been extensively investigated in connection with the aqueous corrosion of iron and steels [10–12]. In the crystal structure of GRs, Fe(II) and Fe(III) ions are bonded octahedrally to six hydroxide ions [13]. The edge-shared Fe(OH)₆ octahedral units form brucite-like iron hydroxide layers, which alternate with interlayers containing anions and water molecules. Though several species of anions, such as SO_4^{2-} and CO_3^{2-} , are present in the interlayers [13–16], chloride-containing green rust (GR(Cl⁻)) with the chemical formula Fe(III)₃Fe(III)(OH)₈Cl·2H₂O is of particular interest as it can help elucidate the corrosion process of iron and steels under a chloride environment [13,17,18].

The transformation of GR(Cl⁻) due to the oxidation reaction via aqueous solution sensitively depends on the reaction conditions such as pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), temperature and coexisting ions [17-22]. It has been pointed out that fine α -FeOOH particles of nanometer size are preferentially formed in a GR(Cl⁻) suspension containing tungstate ions by the controlled injection of oxygen gas, though γ -FeOOH particles with a micrometer length are formed in the GR(Cl⁻) suspension without tungstate ions under the same reaction conditions [23]. The results are considered to be useful to promote the formation of fine α -FeOOH particles on weathering steels under a chloride environment. Furthermore, it has been reported that tungstate ions are efficient inhibitors for iron and steels [24,25]. Therefore, the influence of tungstate ions on the transformation of GR(Cl⁻) due to the oxidation reaction via aqueous solution is worth investigating. Already, in situ measurements of electrochemical

⁰⁰¹⁰⁻⁹³⁸X/\$ - see front matter @ 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.corsci.2014.01.003

properties such as pH, DO and ORP during controlled oxidation have been performed for $GR(Cl^-)$ suspensions containing tungstate ions [23]. In addition, X-ray diffraction patterns of solid particles extracted from the $GR(Cl^-)$ suspension containing tungstate ions at different oxidation times have also been measured [23]. However, the mechanism of the precipitation of fine α -FeOOH particles in the $GR(Cl^-)$ suspension containing tungstate ions is still not completely understood.

In this study, *in situ* measurements of X-ray absorption spectroscopy (XAS) at both Fe K and W L₃ absorption edges of the GR(Cl⁻) suspension containing tungstate ions were carried out during oxidation. Recently, *in situ* XAS measurements at the Fe K edge of the transformation of GR(Cl⁻) due to the oxidation reaction via aqueous solution have been performed [26]. By using the above-mentioned technique, in this study, the local structure around Fe atoms and the chemical state of Fe in the GR(Cl⁻) suspension containing tungstate ions were observed during oxidation. The local structure around W atoms was also characterized. The influence of tungstate ions on the transformation of GR(Cl⁻) to fine α -FeOOH particles due to the oxidation reaction via aqueous solution was investigated.

2. Experimental

Chemicals such as ferric chloride (Fe(III)Cl₃) hydrate, ferrous chloride (Fe(II)Cl₂) hydrate and aqueous sodium hydroxide (NaOH) were used for the synthesis of a GR(Cl⁻) suspension. First, deaerated water, which was prepared by bubbling of Ar gas, was used to prepare an iron chloride solution with an [Fe(II)]/[Fe(III)] ratio of 4.5, in which the total iron concentration was 0.2 mol/L. Subsequently, an aqueous NaOH solution was added to the iron chloride solution in a reaction vessel with continuous bubbling of Ar gas at 278 K. When the addition of aqueous NaOH solution was continued until the [OH⁻]/{[Fe(II]] + [Fe(III)]} ratio equaled 1.5, a GR(Cl⁻) suspension was obtained.

A tungstate solution was prepared from sodium tungstate (Na_2WO_4) hydrate and deaerated water. To obtained a $GR(Cl^-)$ suspension containing 5 mol% W with reference to the total amount of

Fe, deaerated tungstate solution was added to the $GR(Cl^{-})$ suspension. For comparison, a $GR(Cl^{-})$ suspension without W was also prepared by the addition of deaerated water blank. These suspensions are hereinafter referred to as $GR(Cl^{-})$ -5W and $GR(Cl^{-})$ -0W, respectively.

A specimen holder consisting of cellulose fabric and polyethylene film was used for in situ XAS measurements. As cellulose fabric sponged the 0.4-ml GR(Cl⁻)-5W and GR(Cl⁻)-0W suspensions, a homogeneous dispersion of GR(Cl⁻) in aqueous solution was maintained during the *in situ* measurements. Each fabric containing the suspension was packed in 0.02-mm-thick polyethylene film. Note that atmospheric oxygen gas can permeate the polyethylene film. In order to avoid oxidation of the GR(Cl⁻) suspension prior to in situ XAS measurements, the above-mentioned procedures were performed in a glove box, in which the oxygen content was maintained at 0.1%. Then, the GR(Cl⁻)-5W and GR(Cl⁻)-0W suspensions placed in the specimen holders were kept in a desiccant box. Immediately before the in situ XAS measurements, these suspensions were exposed to air at about 300 K. As a result, the GR(Cl⁻)-5W and GR(Cl⁻)-0W suspensions in the specimen holder were oxidized.

The XAS measurements were carried out at the Fe K (7112 eV) and W L₃ absorption edges (10,198 eV) using the synchrotron radiation facility at the beam line station BL14B2 at SPring-8, Japan Synchrotron Radiation Research Institute, Japan. In situ measurements of XAS at the Fe K and W L₃ absorption edges were performed in the transmission and fluorescence modes, respectively. The specimens were irradiated with a beam $1 \text{ mm} \times 5 \text{ mm}$ in size. X-ray absorption spectra at the Fe K and W L₃ absorption edges were collected for approximately 4 min and 3 min, respectively, using the quick X-ray absorption fine structure (QXAFS) technique [27]. The measurements were periodically repeated during the oxidation. As later described, the tungstate ions added to the GR(Cl⁻)-5W suspension are considered to be adsorbed on solid particles such as GR(Cl⁻) and oxidation products. To obtain the adequate intensity, appropriate amounts of the solid particles were separated from the GR(Cl⁻)-5W suspension by centrifugation, and then their X-ray absorption spectra at the W L₃ absorption edge were also measured in the transmission mode. All of XAS

Fig. 1. Aspects of (a) the GR(Cl⁻)-5W and (b) GR(Cl⁻)-0W suspensions in the specimen holder, made of transparent polyethylene film, during the *in situ* XAS measurements.

Download English Version:

https://daneshyari.com/en/article/7896028

Download Persian Version:

https://daneshyari.com/article/7896028

Daneshyari.com