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a b s t r a c t

A numerical investigation of three-dimensional sinusoidally oscillating flow around an

infinitely long cylinder was conducted to examine the onset of the Honji instability and

to gain insight into the mechanism that causes the Honji instability to arise. An attempt

is made to quantify when the instability occurs using the dimensionless flow

parameters of the Keulegan–Carpenter number (KC) and the Sarpkaya number (b).

Through numerical analysis and an explanation of physics, it is shown that the Honji

instability occurs through the mechanisms described by Lord Rayleigh, but is signifi-

cantly different from the Taylor, Dean, and Görtler instabilities.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The renewed interest in the study of the characteristics of periodic flow past bluff bodies, and the circular cylinder in
particular, was prompted when Sarpkaya (1976) suggested that force coefficients obtained at low Reynolds Numbers may
not be scalable to higher Reynolds Numbers. The direct relevance to the offshore industry for these kinds of flows and the
need for predicting the forces resulting from fluid–structure interactions has led to several experimental and computa-
tional studies. A pivotal moment came when Honji (1981) observed three-dimensional spanwise structures induced by the
flow. Honji oscillated a cylinder in a water tank with values of the Sarpkaya number (also known as the frequency
parameter), (b) in the range, �70obo�700 and values of the Keulegan–Carpenter number (KC) up to about 4. In this
context, b¼ f D2/n and KC¼UmT/D, where D is the cylinder diameter, T is the oscillatory period, f¼1/T is the frequency of
the oscillation, Um is the maximum freestream velocity, and n is the fluid kinematic viscosity. Honji showed that,
depending on the value of b, the induced flow remained two-dimensional for KC less than 1.2–2.4. As KC was increased,
the induced flow began to exhibit a marked three-dimensional mushroom-like structure due to instability in the flow. The
mushroom-like structures, or paired vortices of opposite sign, are formed on the cylinder wall perpendicular to the
direction of oscillation and have an equidistant spacing, l in the axial direction and arrange themselves alternately in a
vertical double row in a plane normal to the direction of oscillation. Honji did not give a name to the three-dimensional
instability, but noted that it seemed to be a kind of centrifugal instability.

Based on Honji’s (1981) investigation, Hall (1984) conducted a linear stability analysis for the limiting case of very
small KC and very large b in a two-dimensional streaming flow. The Sarpkaya number was taken to be large so that the
unsteady boundary layer on the cylinder was small compared with its diameter. Hall was able to obtain a relationship
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between KC and b,

KCH ¼ 5:778b�1=4
ð1þ0:205b1=4

þ . . .Þ, ð1Þ

which agreed with Honji’s data. Hall asserted that the instability observed by Honji is of the Taylor–Görtler type.
Sarpkaya (1986) conducted an extensive experimental investigation of the force coefficients and how they are affected

by the Honji instability, separation, and transition to turbulence. Sarpkaya pointed out that there were several significant
differences between the Taylor–Görtler instability and the instability associated with oscillating flow around the cylinder;
he proposed calling it the ‘‘Honji instability’’. As KC increases above the Hall Line, i.e., Eq. (1), the flow becomes unstable to
axially periodic vortices (the mushroom-like structures), which leads to separation, vortex shedding, and eventually to a
minimum drag force. For a given b value, the differences in the KC number where separation, minimum drag, and
turbulence are very small and difficult to measure without notable uncertainty. The effect of transition to turbulence on
the variation of CD is not as drastic as that of the Honji instability.

Hara and Mei (1990a,b), in their studies of oscillating flows over periodic ripples, generalized Hall’s analysis for
oscillating flow over other convex surfaces. Following Hall, they made a first-order approximation to KCH,

KCHb
1=4
¼ 5:778, ð2Þ

and then noted a relationship to the critical Taylor number (Ta), which is a ratio of the centrifugal force to the viscous
force,

Ta¼ KCb1=4: ð3Þ

Hara and Mei showed that there exists a local Taylor number,

Ta¼ A2=Rd, ð4Þ

where A is the oscillatory amplitude and d is proportional to the boundary layer thickness, and they also showed that an
instability of the centrifugal type could occur in a two-dimensional flow when the local Taylor number exceeds a certain
threshold (Tacr). In their analysis of periodic ripples, they assumed that the boundary layer thickness was small and
constant and the local radius of curvature, R, varied. For flow around a cylinder, R is fixed and the local boundary layer
thickness, d, varies as illustrated through the use of vorticity contour plots in Suthon and Dalton (2011). The time t in this
paper refers to the time in a given oscillatory cycle and not to the elapsed time since the calculation started.

Sarpkaya (2002) continued his previous investigation by conducting experiments for 0.02oKCo1.0 and
103obo1.4�106. He divided the KC–b plane into three regions as shown in Fig. 2. The region on the left where
KCoKCS is a region in which there are no observable structures or those that are created do not survive the half-cycle in
which they were created. The flow is considered two-dimensional based on observations of the flow using laser-induced
fluorescence visualization. The unstable transition region in the middle, KCSoKCoKCH, is where quasi-coherent
structures are formed from dipole tubes and eventually become mushroom-shaped structures at the Hall Line. The region
on the right where KC4KCH is a region where the mushroom-shaped coherent structures undergo complex chaotic
interactions, which leads to separation and turbulence. Based on the observed data, Sarpkaya plotted the Stability Line as

KCsb
2=5
¼ 12:5, ð5Þ

and linearized the Hall Line to a first-order approximation as

KCHb
1=4
¼ 5:78: ð6Þ

Sarpkaya emphasized that the demarcation lines at KCS and KCH are not sharp and should be regarded as ‘‘fuzzy
regions’’ due to the differences in the observer’s ability to distinguish the onset of three-dimensionality and the variations
in the quasi-coherent structures.

Elston et al. (2006) used Floquet analysis and direct numerical simulation to investigate oscillatory flow at KC less than
10 and b less than 100. This is the region in Fig. 2 where the Stability and Hall Lines cross, so that, for increasing KC,

Fig. 1. Contour plots of axial vorticity with b¼1035 and KC¼1.5 at (a) zero mean flow, t¼0.00; and (b) maximum mean flow, t¼0.25.
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