Accepted Manuscript

Title: Electric Field-Induced Changes in the Ferroelastic Behavior of (Na_{1/2}Bi_{1/2})TiO₃-BaTiO₃

Authors: Alexander Martin, Neamul H. Khansur, Kyle G.

Webber

PII: S0955-2219(18)30379-0

DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.06.017

Reference: JECS 11938

To appear in: Journal of the European Ceramic Society

Received date: 7-3-2018 Revised date: 7-6-2018 Accepted date: 8-6-2018

Please cite this article Martin Khansur NH, Webber KG. as: A, Electric Field-Induced Changes the Ferroelastic Behavior of (Na_{1/2}Bi_{1/2})TiO₃-BaTiO₃, Journal of the European Ceramic Society (2018), https://doi.org/10.1016/j.jeurceramsoc.2018.06.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electric Field-Induced Changes in the Ferroelastic Behavior of (Na_{1/2}Bi_{1/2})TiO₃-BaTiO₃

Alexander Martin*, Neamul H. Khansur, and Kyle G. Webber

Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany

*Corresponding author: alexander.am.martin@fau.de

Abstract

In this study, the macroscopic mechanical behavior was characterized for poled and unpoled polycrystalline $(1-x)(Na_{1/2}Bi_{1/2})TiO_3$ - $xBaTiO_3$ (NBT-xBT) for compositions across the morphotropic phase boundary (MPB). Due to a field-induced ferroelectric phase transformation, NBT-xBT compositions near the MPB (x = 6 - 7 mol%) showed a significant decrease in the coercive stress for electrically poled samples. The apparent difference in mechanical behavior is suggested to be due to an irreversible electric-field-induced transformation to long-range ferroelectric order in the poled samples. The results indicate a significant difference in the critical stresses for the relaxor-ferroelectric transition and ferroelastic domain wall motion, which can have important effects on applications for lead-free ferroelectrics. To further illustrate this, a method was developed to electrically depole NBT-xBT at room temperature, resulting in an unpoled NBT-xBT material with long-range ferroelectric order. Mechanical testing revealed analogous macroscopic ferroelastic behavior to the poled samples, despite the lack of a piezoelectric response.

Keywords: Electrical depoling; Ferroelastic Properties; Dielectric, Properties; Lead-Free

1. Introduction

Piezoelectric materials have been implemented in various engineered structures and devices for their electromechanical coupling. Current transducer applications, such as sensors and actuators, are primarily based on the lead zirconate titanate ($Pb(Zr_{1-x}Ti_x)O_3$, PZT) system [1–3]. However, over the last few decades, regulations on the restriction of the use of hazardous substances in electronic devices [2,4] has led to intensive research efforts to identify lead-free piezoelectric alternatives[5]. The candidates with the most potential are based on BaTiO₃ (BT) [6,7], $K_xNa_{1-x}NbO_3$ (KNN) [8], and $Na_{1/2}Bi_{1/2}TiO_3$ (NBT)[9]. From these promising candidate systems, NBT-based materials have displayed the largest unipolar strain response [10–14], making them potentially useful for actuator applications.

Among the various NBT-based compositions, solid solutions of $(1-x)Na_{1/2}Bi_{1/2}TiO_3$ - $xBaTiO_3$ - $yBaTiO_3$ - $xBaTiO_3$ - $xBaTiO_$

Download English Version:

https://daneshyari.com/en/article/7897735

Download Persian Version:

https://daneshyari.com/article/7897735

<u>Daneshyari.com</u>