ARTICLE IN PRESS

Journal of the European Ceramic Society xxx (xxxx) xxx-xxx

ELSEVIER

Contents lists available at ScienceDirect

Journal of the European Ceramic Society

journal homepage: www.elsevier.com/locate/jeurceramsoc

Original Article

The microwave dielectric properties and crystal structure of low temperature sintering LiNiPO₄ ceramics

Ping Zhang*, Shanxiao Wu, Mi Xiao*

School of Electrical and Information Engineering and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072. China

ARTICLE INFO

Keywords: Microwave dielectric properties Crystal structure LTCC LINIPO₄ ceramics

ABSTRACT

The LiNiPO₄ ceramic for the LTCC technology was prepared via the traditional solid-state reaction route and its dielectric properties were investigated for the first time. The best dielectric properties of LiNiPO₄ ceramics with a ε_r of 7.18, Q×f value of 27,754 GHz and τ_f of -67.7 ppm/°C were obtained in samples sintered at 825 °C for 2 h. Rietveld refinement was firstly employed to study the crystal structure and dielectric properties of LiNiPO₄ ceramics. Unfortunately, the relatively large negative τ_f was unfavorable to practical applications. Therefore, we introduced TiO₂, which possessed a considerable positive τ_f , to obtain a desired τ_f value. The prepared LiNiPO₄ ceramics with 15 wt% TiO₂ sintered at 900 °C for 2 h exhibited excellent dielectric properties of $\varepsilon_r \sim 11.49$, Q×f ~ 10.792 GHz, $\tau_f \sim -2.8$ ppm/°C. The Ag co-fired experiments confirmed the excellent chemical compatibility with LiNiPO₄-TiO₂ ceramics which might be potential dielectric LTCCs for high frequency applications.

1. Introduction

With the fast development of wireless telecommunication industry, the miniaturization and integration of various components, such as oscillators, antennas and filters, have attracted considerable attentions [1]. Furthermore, the widespread use of mobile communication devices accelerates the study for new technologies to integrate miniaturized dielectric ceramic components [2]. To satisfy the demands for a wide range of practical applications, the low temperature co-fired ceramic (LTCC) technology, one of the most promising integration technologies, has shown its great potential in the production of microwave devices with excellent performances [3]. Therefore, the aspiration for exploiting high quality microwave products is in the process.

Generally, low permittivity (ϵ_r) , high quality factor $(Q \times f)$ and near-zero temperature coefficient of resonant frequency (τ_f) are the essential factors of the microwave dielectric materials for the practical applications [4]. In addition, the selected dielectric materials for LTCC technology should have a good chemical compatibility with inexpensive metal silver (Ag) which possesses low conductor loss and low electrical resistance [5].

Recently, owing to the lower melting point of phosphate, some compounds based on phosphorus, such as LiMPO₄ (M = Fe, Co, Mn), could be potential LTCC candidates [6]. However, the most studies for LiMPO₄ were merely focused on the magnetoelectric and electrochemical properties [6–9]. In 2010, Thomas et al. [2] firstly reported

that LiMgPO₄ ceramics could be sintered very well at 950 °C for 2 h, which exhibited excellent dielectric properties of $\epsilon_r \sim 6.6$, $Q \times f \sim 79,100$ GHz, $\tau_f \sim -55$ ppm/°C. Later, Hu et al. [10] investigated the dielectric properties of LiMnPO₄ ceramics with $\epsilon_r \sim 8.1$, $Q \times f \sim 44,224$ GHz, $\tau_f \sim -90$ ppm/°C. Besides, the LiMnPO₄ ceramics could be co-fired with Ag without any chemical reaction. Xia et al. [11] reported the LiZnPO₄ ceramics ($\epsilon_r \sim 5.3$, $Q \times f \sim 28,496$ GHz, $\tau_f \sim -80.4$ ppm/°C) that could be as a potential candidate for LTCC applications. To solve stability problems existed in LiMnPO₄ system, the TiO₂ was used as an external additive to improve the τ_f value of LiMnPO₄ ceramics. Xia et al. [12] reported that LiMnPO₄-19 wt%TiO₂ ceramics maintained satisfactory dielectric properties of $\epsilon_r \sim 12.3$, $Q \times f \sim 38,671$ GHz, $\tau_f \sim 6.7$ ppm/°C at 875 °C. However, few studies have reported the dielectric properties and crystal structure of LiNiPO₄ ceramics.

In this work, we synthesized the LiNiPO $_4$ ceramics by the traditional solid-state reaction method. The dielectric properties of LiNiPO $_4$ ceramics were systematically studied along with the crystal structure. Moreover, TiO $_2$ was introduced to adjust the τ_f value to near zero. Meanwhile, the chemical compatibility of LiNiPO $_4$ -TiO $_2$ ceramics with an Ag electrode was discussed. Rietveld refinement was employed to study the crystal structure. What's more, the chemical bond parameters were achieved to investigate the correlation between dielectric properties and crystal structure.

E-mail addresses: zptai@163.com (P. Zhang), xiaomi@tju.edu.cn (M. Xiao).

https://doi.org/10.1016/j.jeurceramsoc.2018.05.040

Received 11 March 2018; Received in revised form 27 May 2018; Accepted 28 May 2018 0955-2219/ © 2018 Elsevier Ltd. All rights reserved.

^{*} Corresponding authors.

P. Zhang et al.

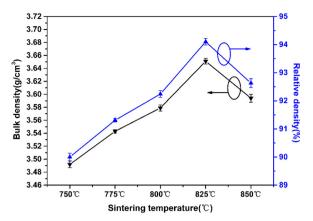


Fig. 1. The variation of bulk and relative densities for LiNiPO₄ ceramics.

2. Experimental procedure

The high purity powders of NH₄H₂PO₄, Li₂CO₃, NiO and TiO₂ were used as the raw materials. All the starting materials were weighted in

accordance with the stoichiometric compositions of LiNiPO₄ and ball-milled for 2 h with ethanol. The slurries were dried and sieved with a 40 mesh screen. Afterwards, the obtained samples were first pre-sintered at 550 °C for 2 h followed by a secondary calcination at 700 °C for 4 h. After calcination, the LiNiPO₄-x wt% TiO₂ (x = 14, 15, 16, 17) mixtures were prepared by pure LiNiPO₄ and TiO₂, and then ball-milled again in ethanol medium for 8 h. After dried, the sieved powders were doped with 8 wt% paraffin as a binder and pressed into cylinders with 15 mm in diameter and 6–7 mm in thickness at 4 MPa. Finally, the obtained cylinders were fired at 550 °C for 2 h to exhaust the binder before sintering at 750–850 °C for 2 h with the heating rate of 3 °C/min.

The phase composition was identified by X-ray diffraction (XRD) (Rigaku D/max 2550 PC, Tokyo, Japan) with Cu K α radiation (V = 200 kV, I = 40 mA). The diffraction pattern fitting was carried out using the FULLPROF program. The microstructures of the sintered samples polished and thermally etched were observed by a scanning electron microscopy (SEM) (ZEISS MERLIN Compact, Germany). The composition analysis was performed using an energy-dispersive X-ray spectroscopy (EDXS) (Genesis MT XV 60) attached to the SEM.

The microwave dielectric properties of the sintered samples were measured in the frequency range of 7–13 GHz with a network analyzer

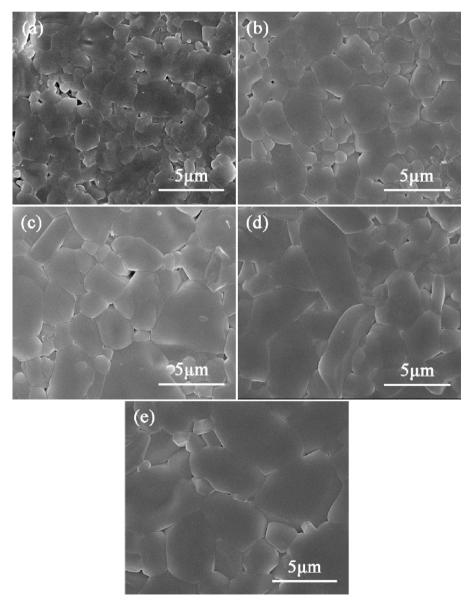


Fig. 2. The SEM micrographs of LiNiPO₄ ceramics sintered at various temperatures for 2 h: (a) 750 °C, (b) 775 °C, (c) 800 °C, (d) 825 °C, (e) 850 °C.

Download English Version:

https://daneshyari.com/en/article/7897792

Download Persian Version:

https://daneshyari.com/article/7897792

<u>Daneshyari.com</u>