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A B S T R A C T

The shrinkage of a spherical pore is a classical model of the final stage of sintering; however, closed pores
observed in real sintering have irregular shapes, which can be approximated as ellipsoids in many cases. In this
study, we used the finite element simulation to evaluate the anisotropic shrinkage of a non-spherical pore. The
shape evolution was expressed as the superposition of the deformation of a pore driven by surface tension and
the deformation of a void driven by remote pressure in the absence of surface tension. By using this superposition
principle, we can predict the shape evolution of any spheroidal pore, which is affected by the initial aspect ratio,
the remote pressure, and the gas pressure inside the pore. We analyzed the role of sintering stress tensor on the
anisotropic shrinkage also.

1. Introduction

The shrinkage of a single spherical pore is the best microscopic
model (Mackenzie-Shuttleworth model [1]) for understanding the final
stage of viscous sintering, which occurs by viscous flow driven by
surface tension and applied pressure. When the closed pore contains
gases, the shrinkage rate of pore volume Vpore is expressed as:
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where μ is the viscosity, Pa is the uniform remote pressure, ppore is the
gas pressure inside the pore, and σs is the local sintering stress. The
local sintering stress of a spherical pore is proportional to the surface
energy γs and inversely proportional to the pore radius r ( =σ γ r2s

s ). It
is equal to the gas pressure, which is necessary to stop shrinkage under
zero applied pressure. The densification is enhanced by the application
of pressure, for example, in sinter forging, hot pressing, hot isostatic
pressing [2], and spark plasma sintering.

The microstructural evolution in real sintering process of glass
particles has been directly observed by using X-ray microtomography
recently [3–8]. It has revealed how closed pores are formed by pinch-
off, or break-up of pore channels [9]. In general, the formed pores are
not perfect spheres, but have irregular shapes, which can be roughly
approximated as ellipsoids in many cases.

The deformation of an ellipsoidal inclusion can be analyzed by using
Eshelby’s method [10,11] for the problem of elasticity. This method

was extended to viscous flow by Bilby, Eshelby, and Kundu [12]. The
first attempt to analyze the shrinkage of an ellipsoidal pore was made
by Olevsky and Skorohod [13] using Eshelby’s approach. For an ellip-
tical pore in two dimensions, Hopper [14] reported the pore shrank
with a constant axial ratio. On the other hand, Van de Vorst [15] found
that an elliptical pore became more anisotropic as it shrank. Tanveer
and Vasconcelos [16] predicted that an elliptical pore shrank to a slit.
Pozrikidis [17] showed the eccentricity of an elliptical pore increased
monotonically in time. Crowdy [18] found that initially circular pores,
which were arranged in a row, became ellipse-like in shape under
evolution. Olevsky [19] pointed out that the anisotropy of both sin-
tering stress and viscosity were factors necessary to describe the ani-
sotropic shrinkage of porous materials containing ellipsoidal pores
aligned in a specific direction. Wakai [20] proposed a deformation
model of a non-spherical pore as the sum of the anisotropic shrinkage
driven by the hydrostatic component of sintering stress and the spher-
oidization driven by the deviatoric component by using the Eshelby’s
solution. However, the classical Eshelby formalism must be modified
when the surface tension cannot be neglected in nanostructured ma-
terials [21,22]. Especially, the ellipsoidal pore deforms non-uniformly
under the action of surface tension.

In order to understand the evolution of pore shape in the final stage,
we simulate the anisotropic shrinkage of non-spherical pores as a re-
sponse to the sintering stress, the remote pressure, and the gas pressure
inside the pore by using the finite element method (FEM). Three typical
cases are considered here: (1) Void ( ≫P σa

s, =p 0pore ), (2) Pore
( >σ 0s , =P 0a , =p 0pore ), and (3) Bubble ( >σ 0s , =P 0a , =Vpore
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constant). A very large pore is considered as a void deforming under
remote pressure, since the effect of surface tension is ignored (case 1).
As the pore size decreases to micro- and nano-scales, the surface tension
on the pore surface becomes very large. In this case (case 2), the pore
shrinkage is driven by the sintering stress. When there is an insoluble
gas inside the closed pore, the gas pressure increases with decreasing
the pore volume. The shrinkage stops when the gas pressure balances
with the sintering stress. The pore is considered as a bubble in this case
(case 3). The non-spherical bubble becomes more spherical, i.e. the
spheroidization occurs, while keeping its volume constant. If the gas is
soluble to the glass and in equilibrium, the pore keeps shrinking by the
driving force − >σ p 0s

pore , where ppore maintains a constant value.
Spherical pores, frequently observed in experiments, are the result of
residual gas pressure inside the closed pore, which is trapped during
sintering in atmospheres, or evolved from the glass in vacuum sintering
[1]. When there is no gas inside the closed pore, the non-spherical pore
becomes more anisotropic as it shrinks under the surface tension. We
will show how anisotropic shrinkage of a pore depends on the gas
pressure inside, the applied pressure, and the sintering stress. We found
a superposition principle, so that the anisotropic shrinkage at any
pressure and at any gas pressure could be predicted from the results of
case 1 (Void) and case 2 (pore) only. Our analysis will be a basis for
understanding the micromechanics behind the macroscopic shrinkage.
Especially, it will be useful when we can obtain the detailed knowledge
of microstructural evolution from the real-time observation using syn-
chrotron X-ray microtomography [23].

2. Simulation method

Consider an axisymmetric ellipsoidal pore (spheroid) which has
semi-axes =a b, c as shown in Fig. 1. The radius of the equivalent
sphere is =r a c( )2 1 3. The pore is centered at the origin inside an in-
compressible viscous fluid with a viscosity μ. The boundary of the
viscous fluid is a concentric sphere with radius r7 . The viscous flow is
described by Stokes equation:
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where ui is the velocity, and p is the pressure. The mass conservation is
expressed as:
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The summation convention for repeated indices is applied
throughout this paper.

The shape evolution of the spheroidal pore was simulated by using
the finite element package ANSYS, Polyflow (Ver. 14.5). We used an
axisymmetric model about the x3 -axis and symmetric about the −x x1 2

plane, so that one fourth of the pore is modeled. For the case 1 (Void),
the normal traction equal to =P γ r2a s was imposed on the outer
boundary of the viscous fluid. The normal traction was zero on the pore
surface. For the case 2 (Pore) and the case 3 (Bubble), the normal
traction is imposed on the pore surface assuming an isotropic surface
energy:

=σ γ κn s (4)

where κ is the curvature, which depends on position. The normal
traction on the outer boundary was set to zero. For case 3 (Bubble), the
pore space was filled with an inviscid incompressible fluid. For the
numerical calculation, we used ′ = × −μ μ1 10 5 for its viscosity. The
effect of gravity was not considered in the present simulation.

The simulations were conducted for spheroids with given aspect
ratios c a. The dimensionless time is defined as:

=t γ t r μ* s 0 (5)

where r0 is the initial radius of the equivalent sphere. We calculated the
axial strain rates (a a˙ , c c˙ ) and the average strain rates (ε̇11, ε̇33) for the
given aspect ratio at the dimensionless time = × −t* 5 10 3 for case 1
(Void), case 2 (Pore), and case 3 (Bubble). The average strain rates were
calculated from the surface integral by using the divergence theorem of
Gauss:
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We also performed the finite element simulation of the spher-
oidization, or rounding, of an ellipsoidal particle, for the comparison
with the spheroidization of a pore.

3. Results

3.1. Anisotropic shrinkage of a void (case 1)

The axial strain rates (a a˙ and c c˙ ) of a spheroidal void under re-
mote pressure =P γ r2a s are plotted as a function of aspect ratio in
Fig. 1. Filled circles show the simulation results of axial strain rates. The
apparent shrinkage rate is calculated from the axial strain rates

= +ε a a c c˙ (2 ˙ ˙ ) 3m . The shrinkage of the void is isotropic for a sphere
( =c c a a˙ ˙ at =c a 1), but anisotropic for oblate voids ( <c c a a˙ ˙ for

<c a 1) and prolate voids ( >c c a a˙ ˙ for >c a 1). The spheroidal void
becomes more anisotropic as it shrinks under the applied pressure.
Solid lines show the theoretical prediction of axial strain rates by Bu-
diansky, Hutchinson, and Slutsky [24]. They applied Eshelby’s analysis
to the collapse of an isolated void in a viscous materials. The present
simulation results agreed with their theoretical prediction exactly. The
axial strain rates at =P γ r2a s are approximated as functions of aspect
ratio =λ c a in the range ≤ ≤λ0.5 3:

= − − −a a λ λ λ γ rμ( ˙ ) 0.0256 0.2134 0.6871 ( )void s
3 2 (7)

=c c a a λ γ rμ( ˙ ) ( ˙ ) ( )void void s
2 (8)

The average strain rates (ε̇11, ε̇33, = +ε ε ε˙ (2 ˙ ˙ ) 3m 11 33 ) defined by Eq.
(6) agreed with the axial strain rates in the present simulation
( =ε a a˙ ˙11 , =ε c c˙ ˙33 , =ε ε˙ ˙m m). This results show that the surface motion
of spheroidal void is an affine deformation ( =u ε x˙i ij j) in accordance
with Eshelby’s analysis.

Fig. 1. Shrinkage of a spheroidal void under applied pressure =P γ r2a s . Circles
show the axial strain rates a a˙ and c c˙ obtained by FEM simulation. Solid line
shows Budiansky's result. The average strain rate, ε̇11 and ε̇33, calculated by Eq.
(6) agrees with axial strain rates. The ellipsoidal void deforms affinely in ac-
cordance with Eshelby's analysis.
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