Accepted Manuscript

Title: Enhanced piezoelectric and ferroelectric properties of BiFeO₃-BaTiO₃ lead-free ceramics by optimizing the sintering temperature and dwell time

Authors: Li-Feng Zhu, Bo-Ping Zhang, Jia-Qi Duan, Bo-Wei Xun, Ning Wang, Yu-Cheng Tang, Gao-Lei Zhao

PII:	S0955-2219(18)30185-7
DOI:	https://doi.org/10.1016/j.jeurceramsoc.2018.03.044
Reference:	JECS 11801
To appear in:	Journal of the European Ceramic Society
Received date:	4-1-2018
Revised date:	22-3-2018
Accepted date:	24-3-2018

Please cite this article as: Zhu L-Feng, Zhang B-Ping, Duan J-Qi, Xun B-Wei, Wang N, Tang Y-Cheng, Zhao G-Lei, Enhanced piezoelectric and ferroelectric properties of BiFeO₃-BaTiO₃ lead-free ceramics by optimizing the sintering temperature and dwell time, *Journal of the European Ceramic Society* (2010), https://doi.org/10.1016/j.jeurceramsoc.2018.03.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Enhanced piezoelectric and ferroelectric properties of BiFeO₃-BaTiO₃ lead-free

ceramics by optimizing the sintering temperature and dwell time

Li-Feng Zhu^{*1}, Bo-Ping Zhang^{*1}, Jia-Qi Duan¹, Bo-Wei Xun¹, Ning Wang¹, Yu-Cheng Tang¹, Gao-Lei Zhao²,

¹School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
² Institute of Acoustics, Chinese Academy of Sciences No.21 North 4th Ring Road, Haidian District, 100190, Beijing, China

Abstract

0.7BiFeO₃-0.3BaTiO₃ (BFO-0.3BT) ceramics were prepared to uncover the impacts of sintering temperature (T_S) and dwell time (t_d) on the microstructure and electrical properties. With increasing the T_S or t_d , the grain sizes increase along with the porosity decreases, which is in favor of the alignment of dipole. However, excess T_S or t_d are inclined to cause the volatilization of Bi₂O₃, which deteriorates piezoelectric properties. Because of the *R*-*T* two-phase coexistence, low defect ions concentration and porosity, as well as appropriate grain size, the excellent d_{33} =208 pC/N and k_p =35.46% as well as P_r =28.52µC/cm² were achieved in BFO-0.3BT ceramics at T_S =1000 °C and t_d =6h. In addition, large unipolar strain 0.13% and d_{33} *=256.2 pm/V also were obtained in BFO-0.3BT ceramics at T_S =1000 °C and t_d =6h. This research indicates that the porosity and defect ion concentration as well as grain size also play an important role in piezoelectric properties in BFO-BT ceramics.

Keywords: Bismuth ferrite, Piezoelectricity, Morphotropic phase boundary, lead-free piezoceramics.

^{*} Corresponding author. *E-mail address*: <u>zhu@ustb.edu.cn</u> (L.-F. Zhu); *E-mail address*: <u>bpzhang@ustb.edu.cn</u> (B.-P. Zhang)

Download English Version:

https://daneshyari.com/en/article/7898021

Download Persian Version:

https://daneshyari.com/article/7898021

Daneshyari.com