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A B S T R A C T

Numerical calculations of the effective (relative) Young’s modulus and thermal conductivity have been per-
formed for porous model materials on computer-generated digital microstructures with a transition from con-
cave to convex pore shape. The results are compared to the case of purely concave and convex pores (isolated or
overlapping). It is shown that the Pabst-Gregorová cross-property relation for isotropic porous materials with
isometric pores gives an excellent prediction of effective (relative) properties for materials with a transition from
concave to convex pore shape. With accuracy better than 0.010 relative property units (RPU) this prediction is
far better than the prediction by any other cross-property relation currently known. For the intermediate
(concave-convex) microstructures the accuracy of this cross-property relation is better than that for micro-
structures with purely concave pores (accuracy better than 0.034 RPU) and, surprisingly, even better than for
purely convex pores (accuracy better than 0.011–0.013 RPU).

1. Introduction

Partial sintering is one of the many methods that can be applied for
fabricating porous ceramics (or other materials, e.g. metals or glasses)
from powder compacts [1–10]. It is mainly used for single-phase ma-
terials, where sintering occurs by diffusion processes without a liquid
melt (solid state sintering [11]), and is realized by firing the material at
a temperature that is lower (or a time that is shorter) than required for
full densification. The initial powder compact (e.g. after pressing) or the
green body (e.g. after slip casting, dewatering and drying) consists ty-
pically of convex particles in point contact, the average number of
contact points (coordination number) being 7 for random close (dense)
[11] or maximally random jammed [12] packing of monodispersed
spherical particles. The pore space between these convex particles
(intergranular void space) is fully connected and exhibits a purely
concave surface. During sintering the point contacts become area con-
tacts, first (in the initial stage of sintering) in the form of sinter necks,
with a cross section dictated by the particle shape (circular if the par-
ticles are spherical), and then (in the intermediate and final stage of
sintering) in the form of grain boundaries, whose shape becomes
polyangular (with five edges on average [11]) and whose number in-
creases to an average of 14 faces per grain [11], when full densification
is approached. At the same time the pore space transforms from its fully

connected, purely concave state (powder compact before sintering),
through a state with essentially concave pore space surface and convex
singularities in the form of sinter necks (intial stage of sintering) to an
interconnected network of pore channels along the grain edges (inter-
mediate stage of sintering) and finally to a state in which the pores are
convex and isolated (final stage of sintering) [11]. In principle, the
sintering process can be stopped at an arbitrary stage of this sequence
by rapidly cooling down. Then the resulting microstructure is that of a
partially sintered material.

The determination of the effective properties of partially sintered
materials is a long-standing and still largely unsolved problem of ma-
terials science and technology, although the first attempts to solve this
problem date back almost six decades ago [13]. They are related to the
so-called minimum contact area or minimum solid area approach
[14–20], which has recently been shown to be highly misleading [21].
What has become universally recognized through decades of research is
the fact that the effective property values, in particular strength
(compressive, flexural, tensile etc.), elastic moduli (Young’s modulus,
shear modulus, bulk modulus) and conductivities (thermal con-
ductivity, electrical conductivity), of partially sintered materials are
lower than those of their isoporous counterparts fabricated in another
way, e.g. by using pore formers or foaming [10]. The obvious reason for
this difference is pore shape: for sufficiently high porosity, partially
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sintered materials exhibit a pore space with essentially concave surface
curvature. Unfortunately, due to the absence of exact single-pore so-
lutions for other than ellipsoidal shapes [22] and the fact that the pore
space of partially sintered materials is fully connected initially (bi-
continuous microstructure) and retains its bicontinuous character down
to rather low porosities, individual concave pores are neither amenable
to analytical modeling (not even in the case of periodic arrays) nor very
interesting from the practical point of view. Therefore, numerical
modeling is the only way to calculate the effective properties of ma-
terials with essentially concave pore space surface curvature.

While the case of convex (spherical or spheroidal) pores, isolated or
overlapping, has been treated previously by many authors, and also
numerical calculations for materials with a concave pore space surface
curvature (intergranular void space) are available [23,24], all these
calculations have been performed either for elastic properties or for
conductivity (thermal or electrical). We are not aware of any work that
compares results for elastic moduli and conductivity for materials with
concave pores, although the application of cross-property relations
would represent a major progress in this field. Moreover, as explained
above, real sintering processes usually do not result in purely concave
pores. Therefore it would be interesting to investigate the effective
properties of materials that exhibit intermediate microstructures with a
transition from a fully connected pore space with purely concave sur-
face (bicontinuous microstructure) to purely convex isolated pores
(matrix-inclusion microstructure). It can be expected that even a crude
approach that takes into account this transition would yield results that
are much more realistic for partially sintered materials and much more
representative for real sintering processes than an approach that takes
into account only concave pores. Therefore, the present work reports
recent results of numerical property calculations (Young’s modulus and
thermal conductivity) based on digital microstructures that exhibit in-
termediate microstructures with both concave and convex pore surface
features. Based on these results the accuracy of cross-property relations
is tested and compared

2. Theoretical

For many purposes porous materials can be considered as two-phase
composites, consisting of a solid phase and a pore phase. When the
property values of the pore phase are negligibly small compared to
those of the solid phase, it makes sense to define relative properties, e.g.
the relative Young’s modulus and relative thermal conductivity
[25,26],

= =k k
k

E E
E

, ,r r
0 0 (1a,b)

respectively, where k and E are the effective thermal conductivity and
Young’s modulus of the porous material as a whole and k0 and E0 the
corresponding values of the dense (i.e. pore-free) solid phase. Irre-
spective of the microstructure (which can even be anisotropic), these
relative properties are bounded from above by the upper bounds (upper
Wiener bound [27] for the thermal conductivity and upper Paul bound
[28], often called Voigt bound, for the Young’s modulus)
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where ϕ is the porosity (i.e. the volume fraction of the pore space) and
the equality sign applies to materials with translational invariance in
the direction of the applied field (stress field or temperature gradient
field). For isotropic microstructures we have the upper Hashin-
Shtrikman bounds [29,30],
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where the equality sign holds only for very special types of micro-
structures [31,32]. This is essentially all that can be said without
adopting model assumptions. The simplest assumption on which

analytical modeling can be based is that of spherical pores. For this case
the single-inclusion solutions are [33–35]
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where the former is always exact and the latter is exact for solid Poisson
ratios of 0.2 and 1/3, but remains an excellent approximation for all
Poisson ratios, as long as the solid is non-auxetic. Albeit exact for the
case of a single spherical pore in an infinitely extended solid, from the
viewpoint of real materials these are just linear approximations, for
which validity can be expected only for very low porosities. Under this
circumstance also the well-known non-linear model relations [36]
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(power-law relation) and [37,38]
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(exponential relation) reduce to the aforementioned linear approx-
imations.

Materials exhibiting a certain type of behavior (linear, power-law,
exponential etc.) for one property (e.g. thermal conductivity), exhibit
the same type of behavior, but with another numerical coefficient, also
for another property (e.g. Young’s modulus). Based on this fact, and the
complete analogy of the porosity dependences reflected by Eq. (2)
through (6), the following cross-property relations (CPRs) can be de-
rived [26,39]:
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For reasons of convenience these CPRs will be denoted as WP-CPR
(Wiener-Paul), HS-CPR (Hashin-Shtrikman), lin-CPR (linear) and PG-
CPR (Pabst-Gregorová) in the sequel. Althougth their derivation is
based on spherical pore shape, preliminary experience has shown that
CPRs in the present form are suitable for isotropic porous materials with
isometric pores of any shape. Moreover, based on the Eshelby solution
for ellipsoidal inclusions [40–43], these CPRs can even be generalized
to isotropic porous materials with anisometric (spheroidal) pores [44].
Since the present paper does not deal with anisometric pores, this
possibility of generalization is not used here.

3. Experimental

3.1. Generation of digital microstructures

The digital microstructures in this work have been generated and all
numerical calculations have been performed using the GeoDict® soft-
ware package [45] in boxes (representative volume elements) with
200× 200×200 cubic voxels (the voxel edge length being set to
1 μm). The pore diameters of the convex pores (spherical, isolated or
overlapping) were chosen to be 15 μm (monodisperse). Microstructures
with randomly arranged concave pores (i.e. intergranular voids be-
tween convex isometric grains) have been obtained using the GrainGeo®

module by creating a maximally random jammed packing (with
packing density 64%) of 15 μm spherical particles and letting the par-
ticle diameters grow uniformly via the GeoDict® “sedimentation algo-
rithm”, thus transforming point contacts into contact areas and redu-
cing the porosity down to values approaching zero. The algorithm
ensures that the pores remain concave until full densification is
achieved. On the other hand, microstructures with a transition from
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