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A B S T R A C T

We consider heat transfer problem in a composite ceramic featuring a thin nonlinear interphase layer with
distinctively different characteristics (high thermal conductivity, apart from the mentioned physical size). The
presence of an interphase may be problematic for the classical FEM approach in terms of technical im-
plementation, accuracy and stability of the results. We avoid the potential issues by replacing the interphase in
the model with a zero thickness imperfect nonlinear interface with two transmission conditions. These condi-
tions are carefully derived using asymptotic analysis and aim at preserving the physical properties of the original
interphase layer now absent in the model, thus ensuring an accurate solution. Numerical examples with parti-
cular attention to various physical and geometrical aspects illustrate the validity of the described approach.

1. Introduction

Composite materials are characterised by enhanced physical prop-
erties due to their structure [11,27,14–16,33,13]. These account for the
widespread use composites have gained in the past decades in every
possible area of application, from energy production [1,6] to civil
construction [29,35] to electronics [41] to automotive, aeronautic and
aerospace engineering [37,40]. Many of these areas of technology are
particularly conscious of safety-related issues, which makes accuracy a
primary target while creating models of the composites in use. Un-
fortunately, the straightforward use of the classical finite element ap-
proach to modelling materials with small structural features, such as
thin layers called interphases, often leads to undesired results, such as
unrealistic and inaccurate solutions or numerical instability
[32,26,30,31,28]. This explains the need to introduce alternative ways
to model such composites.

Depending on the priorities, there are several directions to take. For
example, one may attempt to give a new formulation of the finite ele-
ments, as was done for the problem of heat transfer in a composite with
a thin conductive interphase in [32]. This resulted in reducing the de-
grees of freedom and achieving faster construction of mesh and com-
putation in comparison with the classical approach. Yet a limitation of
this method was that it was not possible to have a detailed solution
within the interphase region.

Another way is to simplify the structure, i.e. to replace the thin layer
in the model with an object of zero thickness. For instance, Lebon and
Rizzoni do so by means of a two-level model with a perfect contact

interface at the first level and imperfect interface at the second one
[20,21,36,37]. More commonly, however, the interphase layer is re-
presented in the model as an imperfect interface with a set of trans-
mission conditions that simulate the physical behaviour of the original
interphase [4,5,24,22,23,26,42]. Having developed this method for
low-conductive curvilinear layers in [2,3], we moved on to apply a
similar approach for the situation when the interphase is, contrarily,
highly conductive [39]. Such a setting is similar to considering com-
posites with stiff interphases [10,25]. The case of a highly conductive
interphasial layer can be encountered, for example, in metal reinforced
ceramics that have been the object of a variety of studies regarding their
thermal conductivity, increased toughness and other physical para-
meters and processes as well as the methods of obtaining such materials
[9,18,19,34,38].

It is worth mentioning that interfacial energy is often introduced
within the models with zero-thickness interface [7,8,12,17]. These
works show the significant influence of the structure of the interface,
and, particularly, the way it may affect wave propagation, including
surface waves.

In the next section of this paper we formulate the considered pro-
blem and obtain the transmission conditions that we intend for use.
Section 3 in its turn provides the numerical examples to support our
analytical results. The final section collects the drawn conclusions and
the scope set for future work.
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2. Problem formulation and the derivation of transmission
conditions

We are considering heat transfer in a cylindrical composite with a
thin highly conductive interphase of a shape close to a ring. To be
precise, the boundaries are smooth closed curves of small curvature,
while the centre line in a circle r0(ϕ)= r0.

Initially we are trying to solve the heat transfer equation with
conditions of perfect contact with the interphase:
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Fourier's law for defining the heat flux is q=− k(T)∇ T.
After switching to polar coordinates (see (1) and (2)), the boundary
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For deriving the transmission conditions in this case, we follow our
approach [3,2] of rescaling the interphase by means of rescaling its
width:

=h
ε
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where h͠ becomes proportional to the sizes of the adjacent layers. At the
same time, we rescale the heat source and the thermal conductivity of
the interphase material
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This makes the interphase characteristics comparable in value with
the other parameters.

Throughout this procedure, we introduce the new coordinate
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where the constant centre line, i.e. ′ =r 00 , has been taken into account.
We also redefine the temperature as a function of the new variable,
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and, as follows from (7) and (9),
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The described transformations bring (24)(241) to the view
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Here and henceforth, for the sake of brevity, we are omitting the
arguments of the functions, bearing, however, in mind that in reality

∼h k Q, ,͠͠ are all, generally speaking, non-constant.

While the form of the first condition (4)(42) is obvious also in the
new terms, the second one (4)(43) transforms into
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We now look for a solution to this boundary value problem in the
asymptotic form
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Now let us substitute the asymptotic expansions into the boundary
value problem. The governing equation will at this step be represented
as a series of equations grouped by the powers of ε:
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We note that upon substitution of the normal vector expansion,

+ ∂
∂

± +
′ ⎛

⎝
⎜

± ′ ∂
∂

− ∂
∂

⎞

⎠
⎟ ± =∼ ∼

±q
ε

k
h ξ

T ϕ t kh
r

h

h ξ ϕ
T ϕ t1 ( 1

2
, , ) ( 1

2
, , ) 0.

͠ ͠
͠

͠ ͠

͠2
0

1
2

(22)

Therefore, we get in the leading terms the following boundary value
problem
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It can be easily noticed from =∂
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that

=∼ ∼T ξ ϕ t T ϕ t( , , ) ( , )0 0 , i.e. in the leading terms the temperature is con-
stant with respect to the coordinate ξ. At the same time (23)(232) is
already sufficient to be used as the first transmission condition. The
further analysis we are conducting to obtain just the second transmis-
sion condition.

In terms of ∼T1, the boundary value problem is identical to (23),
which brings us to the analogous conclusion that =∼ ∼T ξ ϕ t T ϕ t( , , ) ( , )1 1 ,
or, again, there is no dependence on ξ.

We now consider the boundary value problem in terms of ∼T2,
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