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Abstract

A rational treatment of time-mean separation of a nominally steady turbulent boundary layer from a smooth surface

in the limit Re!1, where Re denotes the globally defined Reynolds number, is presented. As a starting point, it is

outlined why the ‘‘classical’’ concept of a small streamwise velocity deficit in the main portion of the oncoming

boundary layer does not provide an appropriate basis for constructing an asymptotic theory of separation. Amongst

others, the suggestion that the separation points on a two-dimensional blunt body is shifted to the rear stagnation point

of the impressed potential bulk flow as Re!1—which is expressed in a previous related study—is found to be

incompatible with a self-consistent flow description. In order to achieve such a description, a novel scaling of the flow is

introduced, which satisfies the necessary requirements for formulating a self-consistent theory of the separation process

that distinctly contrasts former investigations of this problem. As a rather fundamental finding, it is demonstrated how

the underlying asymptotic splitting of the time-mean flow can be traced back to a minimum of physical assumptions

and, to a remarkably large extent, be derived rigorously from the unsteady equations of motion. Furthermore, first

analytical and numerical results displaying some essential properties of the local rotational/irrotational interaction

process of the separating shear layer with the external inviscid bulk flow are presented.
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1. Introduction

The rational description of break-away separation of a statistically steady and two-dimensional incompressible

turbulent boundary layer flow past an impermeable rigid and smooth surface in the high-Reynolds-number limit

represents a long-standing unsolved hydrodynamical problem. Needless to say that an accurate prediction of the

position of separation, in combination with the local behaviour of the skin friction, has great relevance for many
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engineering applications, where e.g. internal flows, like those through diffuser ducts, or flows past airfoils play a crucial

role.

1.1. Problem formulation and governing equations

The picture of such flows near separation is sketched in Fig. 1. As a basic assumption, the suitably formed global

Reynolds number Re is taken to be asymptotically large:

Re :¼ Ũ L̃=ñ!1; n :¼ Re�1 ! 0. (1)

Herein ñ, L̃, and Ũ denote, respectively, the (constant) kinematic viscosity of the fluid, a reference length, typical for the

geometry of the portion of the surface under consideration, and a characteristic value of the surface slip velocity

impressed by the limiting inviscid stationary and two-dimensional irrotational bulk flow, hereafter formally indicated

by n ¼ 0. All flow quantities are suitably non-dimensionalised with L̃, Ũ , and the (uniform) fluid density. Let t, p,

x ¼ ðs; n; zÞ, and u ¼ ðu; v;wÞ be the time, the fluid pressure, the position, and the velocity vector. Here u, v, and w are the

components of u in directions of the natural coordinates s, n, and z, respectively, along, normal to, and projected onto

the separating streamline S, given by n ¼ 0, of the flow in the limit n ¼ 0. Furthermore, ueðsÞ denotes the surface slip

velocity in that limit. The origin s ¼ n ¼ 0 is chosen as the location S where S departs from the surface. Thus, S

coincides with the surface contour for sp0. Also, note that S has, in general, a curvature of Oð1Þ for jsj ¼ Oð1Þ.

In coordinate-free form, the Navier–Stokes equations then are written as

r � u ¼ 0, (2)

Dtu ¼ �rpþ nDu; Dt ¼ qt þ u � r; D ¼ r � r, (3)

where r is the gradient with respect to x. They are subject to the common no-slip condition u ¼ 0 holding at the surface.

As a well-known characteristic, the stationary Reynolds-averaged turbulent flow can be expressed in terms of the time-

averaged motion. In the following we employ the conventional Reynolds decomposition of any (in general, tensorial)

flow quantity q into its time-mean component q, see Fig. 1, here regarded as independent of z, and the (in time and

space) stochastically fluctuating contribution q0,

qðx; t; . . .Þ ¼ qðx; y; . . .Þ þ q0ðx; t; . . .Þ; q :¼ lim
Y!1

1

Y

Z Y=2

�Y=2
qðx; tþ y; . . .Þdy. (4)

Herein the dots indicate any further dependences of q apart from on x and t, e.g. on Re. Reynolds-averaging of Eqs. (2)

and (3) then yields the well-established Reynolds equations (in the case qz � 0 of planar time-mean flow):

r � u ¼ 0, (5)

Dtu ¼ �rp� r � u0u0 þ nDu; Dt ¼ u � r. (6)

It is further presumed in the subsequent analysis that all components of the Reynolds stress tensor �u0u0 are, in general,

of asymptotically comparable magnitude (assumption of locally isotropic turbulence). Most important, we disregard

any effects due to free-stream turbulence. That is, the turbulent motion originates from the relatively thin fully
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Fig. 1. Time-mean flow near (a) smooth separation (the dotted streamline indicates possible backflow) and (b) separation due to

stagnation of the bulk flow, cf. Neish and Smith (1992). The inviscid limit of u is shown dashed, and the turbulent shear flow is

indicated by a shading.
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