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A B S T R A C T

The effective Young’s modulus and thermal conductivity of porous materials can be rigorously bounded from
above via micromechanical bounds (upper Wiener–Paul bounds and upper Hashin–Shtrikman bounds), and
several model relations are commonly used as tentative approximate predictions (Maxwell-type, Coble–Kingery-
type, power-law and exponential relations). Based on numerical calculations on computer-generated digital
model microstructures, both periodic and random, it is shown that these model relations provide rough ap-
proximations that are more or less appropriate for microstructures with essentially convex pores, but are not
suitable for microstructures with concave pores. On the other hand, the Pabst–Gregorová cross-property relation
provides a very accurate (better than 0.04 relative property units) analytical prediction for the relative Young’s
modulus of isotropic porous materials with isometric pores, both convex and concave, when the relative thermal
conductivity is known. It is shown that this cross-property relation is the best prediction currently available for
isotropic porous materials with isometric pores.

1. Introduction

The estimation of the effective properties of heterogeneous mate-
rials, especially multiphase materials (e.g. composites and porous ma-
terials), is one of the most important problems in materials science and
the theory of materials. In particular, the prediction of the effective
properties of porous materials is a key problem, because porosity is a
ubiquitous feature in virtually all classes of natural and man-made
materials, i.e. the artificial products of most processing techniques.
While for dense composites many effective properties, e.g. elastic
moduli and thermal (or electrical) conductivity, can be predicted with
satisfactory accuracy by rigorous micromechanical bounds, when the
volume fractions and phase properties are known (at least as long as the
phase property contrast, i.e. the ratio of the phase properties, remains
sufficiently close to unity) [1–3], the difference between upper and
lower bounds increases as the phase property contrast deviates from
unity. In the extreme case of porous materials, where the pore phase
property values are negligibly small compared to those of the solid
phase, the lower bounds become zero for all finite pore volume frac-
tions and therefore inefficient. In this case it is common practice to
invoke model relations, when a more concrete prediction of the effec-
tive properties is needed. The most popular model relations for the
purpose of prediction are effective medium approximations, such as

Maxwell-type, self-consistent and differential models [1–3], as well as
our (Pabst–Gregorová-type) exponential relations [4–6] and Co-
ble–Kingery-type relations [7–9]. For low porosity all these relations
reduce to the exact solution of the corresponding single-inclusion pro-
blem (i.e. the solution for infinitely low porosity, corresponding for real
materials to the so-called linear or non-interaction approximation [3],
e.g. for spherical pores [10–12]), and for high porosity the form of these
relations ensures that the corresponding upper bounds (e.g. the upper
Wiener bound for the conductivity of isotropic or anisotropic porous
materials [13], the upper Paul bound for the elastic modulus of iso-
tropic or anisotropic porous materials [14] or the corresponding upper
Hashin–Shtrikman bounds [15,16] for isotropic porous materials) are
not exceeded.

Now it is well known that apart from porosity, i.e. the volume
fraction of pores (or, more generally, the volume fraction of the pore
space), also other microstructural features determine the effective
properties. There are several approaches to take these microstructural
features into account, i.e. to quantify them and implement them into
rigorous bounds (e.g. three-point bounds [1–3]) or model relations (e.g.
cluster expansions or effective medium approximations [1–3]). While
the correlation function approach [1,2] is systematic and general, but
laborious to realize, difficult to implement and not without practical
limits, a more pragmatic approach consists in identifying and
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subsequently quantifying key features of the microstructure that are
likely to have a stronger influence on the effective properties than
others. It is well known, for example, that the shape of pores has a
significant influence on the effective elastic moduli and conductivity of
porous materials, and there are many reasons to surmise that the in-
fluence of pore shape overshadows other influences on these properties,
such as pore size, pore size distribution, pore distance, spatial pore
distribution etc. (Numerical results underpinning this conjecture will be
given in a subsequent paper.) It is also known that large deviations from
spherical pore shape can strongly affect the effective properties even at
low porosity. Of course, for anisometric pores that can be approxi-
mately considered as rotationally symmetric, e.g. elongated (prolate) or
flattened (oblate) pores, spheroids are the model shape of choice, be-
cause the shape of spheroids (biaxial ellipsoids) can be uniquely de-
scribed by a single aspect ratio and exact single-inclusion solutions of
the Eshelby type [17] are available (the latter are available also for
triaxial ellipsoids, but these require two aspect ratios for a unique de-
scription of their shape). These single-inclusion solutions for the ef-
fective elastic moduli and conductivity of materials with ellipsoidal or
spheroidal pores are well known [1–3,18], and their implementation
into effective medium approximations is straightforward [19–27], so
that it can be expected that the effective elastic moduli and conductivity
of porous materials with ellipsoidal or spheroidal voids can be roughly
predicted, in a similar way as for materials with spherical pores and to a
similar degree of approximation, according to one or another effective
medium approximation.

Unfortunately many porous materials, e.g. powder compacts ob-
tained by pressing or partially sintered ceramics, have pores that are
neither spherical nor spheroidal or ellipsoidal. In this case the absence
of the “Eshelby property” [28–34] principally precludes any analytical
modeling of the porosity dependence of the effective properties. In
particular, so-called “minimum solid area models ”(also called
“minimum contact area models”), which have been often invoked for
tentatively predicting the porosity dependence of effective elastic
moduli and thermal conductivity of porous materials materials with
concave pores [35–49], have recently been shown to be useless [50],
because they yield completely misleading conclusions even in the
simplest case for which these models have been originally designed and
for which a minimum solid area can be well defined and easily calcu-
lated, i.e. for monosized grains (initially spherical particles with point
contacts) in a simple cubic array [50]. Indeed, in the field of partially
sintered materials, so-called minimum solid area models have misled
many authors and have resulted in considerable confusion in the lit-
erature, including repeated statements of an allegedly “possible pre-
sence of (simple) cubic packing in the initial as-pressed powder com-
pact” [41]. Therefore, numerical modeling is currently the only way to
calculate the effective properties of porous materials with concave
pores. Only this type of modeling can be expected to correctly predict
the well-known and frequently observed fact, well documented by ex-
perimental data on powder compacts and partially sintered materials
[35–49,51–55], that materials with concave pores (e.g. interparticle
voids between spherical particles) exhibit effective Young’s modulus
and conductivity values that are (for the same porosity) significantly
below those of materials with convex isometric (e.g. approximately
spherical) pores. In order to obtain results that are unaffected by un-
desired microstructural defects, e.g. microcracks or other defects re-
sulting from specific material processing issues, it is useful to perform
these calculations on computer-generated digital model micro-
structures, which are free of such bias. Although numerical calculations
of this type have been performed by several authors in the past, mainly
by Roberts and Garboczi [56,57], these previous papers focus either on
conductivity or on elastic properties, but there is no work in the current
literature that compares both elastic moduli and conductivity for the
same microstructures and compares them with the predictions of our
cross-property relation [58]. Therefore this work investigates, by nu-
merical calculations on computer-generated digital microstructures, the

porosity dependence of the Young’s modulus and thermal conductivity
of cubic and isotropic porous materials with isometric pores vis-a-vis the
upper Wiener–Paul bounds, the upper Hashin–Shtrikman bounds, the
power-law predictions, the Coble–Kingery relations and our (Pabst–-
Gregorová-type) exponential predictions. This paper reports, for the
first time, the remarkable fact that even in the case of concave pores, for
which all effective medium approximations fail, the relative Young’s
modulus can still be predicted with great accuracy via our cross-prop-
erty relation [58], when the relative thermal conductivity is known,
and vice versa.

2. Theory: rigorous bounds, predictive models and cross-property
relations

2.1. Rigorous micromechanical bounds

Depending on the microstructural information available (e.g. one-
point, two-point, three-point correlation functions and parameters
[1–3]) rigorous bounds of higher order (theoretically up to fourth order
[1]) can be applied to delimit the possible effective property values.
However, when the only microstructural information available are one-
point correlation functions (i.e. volume fractions), only the one-point
bounds (for microstructures of arbitrary symmetry, i.e. isotropic or
anisotropic ones) and the two-point bounds for isotropic micro-
structures remain. Moreover, in the case of porous materials with
negligible pore phase property values the phase property contrast is
infinitely high, and all lower bounds (at least all classical, so-called
“contrast bounds ”[1]), tend to be zero. Defining the relative thermal
conductivity kr and Young’s modulus Er as
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respectively, where k and E are the effective thermal conductivity and
Young’s modulus of the porous material and k0 and E0 the corre-
sponding values of the dense (i.e. pore-free) solid, the one-point upper
bounds (upper Wiener bound [13] for the thermal conductivity and
upper Paul bound [14], often called Voigt bound, for the Young’s
modulus) are

≤ −k ϕ1 ,r (2a)

≤ −E ϕ1 ,r (2b)

where ϕ is the porosity (i.e. the volume fraction of the pore space) and
the equality sign applies to materials with translational invariance in
the direction of the applied field (stress field or temperature gradient
field).

The relative thermal conductivity and Young’s modulus of isotropic
porous materials with zero pore phase property values are bounded
from above via the upper two-point bounds (upper Hashin–Shtrikman
bounds) [8,9] in the form [6]
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respectively. The inequality for thermal conductivity, Eq. (3a), is valid
for isotropic porous materials without any restriction, while the in-
equality for Young’s modulus, Eq. (3b), corresponds to the upper Ha-
shin–Shtrikman bound exactly only when the Poisson ratio is 0.2 or 1/3
[59]. Nevertheless, as long as the solid phase is non-auxetic, it is an
excellent approximation to the upper Hashin–Shtrikman bound also for
other Poisson ratio values, at least in the range 0.1–0.4.
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