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Abstract

In this paper we are interested in the Quartapelle–Napolitano approach to calculation of forces in viscous

incompressible flows in exterior domains. We study the possibility of deriving a simpler formulation of this approach

which might lead to a more convenient expression for the hydrodynamic force, but conclude that such a simplification

is, within the family of approaches considered, impossible. This shows that the original Quartapelle–Napolitano

formula is in fact ‘‘optimal’’ within this class of approaches.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Calculation of hydrodynamic forces acting on an object immersed in a fluid is one of the central objectives in many applied

problems in Fluid Dynamics. In this investigation we analyse the possibility of extending the approach to calculation of forces

proposed by Quartapelle and Napolitano (1983). We will be concerned with incompressible flows in unbounded exterior

domains (Fig. 1(a)). In some derivations we will also consider truncationsO1 of the domainO obtained by imposing an exterior

boundary G1 (Fig. 1(b)). We will fix the origin of the coordinate system at the obstacle and will assume that the obstacle

remains motionless with the fluid velocity vanishing on its boundary. We will also assume that there is a uniform flow U1e1 at

infinity (e1 is the unit vector corresponding to the OX axis). The fluid motion is governed by the Navier–Stokes system

representing conservation of mass and momentum. This system of equations will be assumed to have the following form:

qu
qt
� u� xþ =

u2

2
þ =pþ n=� x ¼ 0 in O� ½0;T �, ð1aÞ

= � u ¼ 0 in O� ½0;T �, ð1bÞ

ujt¼0 ¼ u0 in O, ð1cÞ

ujG0
¼ 0 in ½0;T �, ð1dÞ

u�!U1e1 in ½0;T � for jxj !1, ð1eÞ
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where u ¼ ½u1; u2; u3� is the velocity field, x ¼ =� u is the vorticity, p is the pressure, n represents the coefficient of the

kinematic viscosity (the density of the fluid is assumed equal to unity), u0 is the initial condition, T represents the end of the time

interval considered and x ¼ ½x1; x2;x3� is the position vector. Given an object with a boundary G0 characterized by the local

unit normal vector n facing into the object (Fig. 1(a,b)), the hydrodynamic force acting on this object is, by definition, given by

the following expression:

F ¼ Fp þ Fn ¼

I
G0

pnds� n
I
G0

=uþ ð=uÞT
� �

nds ¼
I
G0

pndsþ n
I
G0

n� xds. (2)

The velocity gradient is defined as ½=u�ij ¼ qui=qxj and the two forms of the viscous term Fn are equivalent due to the identityH
G0
ð=uÞTnds ¼ 0 valid for all incompressible fields u. The arguments that we will elaborate in this paper will be valid in both

2D and 3D domains; for the sake of simplicity of exposition, however, the main proof will be restricted to the 2D case with its

generalization to 3D being quite straightforward.

It is often convenient to solve equations of fluid motion (1) in one of the so-called ‘‘non-primitive’’ formulations

involving only vorticity and velocity, or streamfunction [see, e.g., Gresho (1991), Quartapelle (1993)]. In such cases one

does not have direct access to the pressure required to evaluate Fp. Similar situation arises also in experimental

investigations where the Particle Image Velocimetry (PIV) measurements are capable of extracting instantaneous

velocity and vorticity fields with systematically increasing resolution in space and time [see, e.g., Rockwell (2000)].

Unavailability of pressure in such approaches motivates the need for alternative ways of calculating the hydrodynamic

force in which pressure is not needed. In the literature several methods have been proposed, all relying on suitable

manipulation of the Navier–Stokes system (1). Below we will briefly review the most important results; derivation of

some of these approaches will be analysed in detail in the following section. We also remark that, in view of the

assumptions made, these expressions will not include terms corresponding to the motion of the obstacle. This lack of

generality, however, does not affect the main point of the paper.

The best-known approach, popularized by Saffman (1992), expresses the force in terms of the vorticity impulse as

F ¼ �
1

D� 1

d

dt

Z
O
x� xdO, (3)

where D ¼ 2; 3, is the spatial dimension. While providing an interesting insight into the relationship between the force

and vorticity dynamics, this approach has the disadvantage that integration is extended over the whole infinite domain.

Consequently, vorticity at very large distances from the obstacle must be included which can be quite difficult in both

numerical simulations and PIV measurements. In addition, the time derivative present in Eq. (3) tends to amplify noise.

As an alternative, Noca et al. (1997, 1999) proposed a family of formulas with the generic form

F ¼ �
1

D� 1

d

dt

Z
O1

x� xdOþ ½integral over G1� þ ½integral over G0�, (4)

where integration is restricted to the truncated domain O1 and the far field contribution is contained in the integral over

G1. These formulas no longer require integration over an infinite domain, but still suffer from the presence of the time

derivative. Furthermore, evaluation of the fluxes involved in the integrals over G1 may be complicated.

A different approach was proposed by Quartapelle and Napolitano (1983) where, before integrating over the domain,

the momentum equation (1a) is multiplied by the gradient =Za of a harmonic function Za which satisfies a Neumann-

type boundary condition n � =Za ¼ �n � a on G0 and whose gradient decays to zero at the outer boundary. As a result,
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Fig. 1. Schematic of the flow past an obstacle G0 in (a) an unbounded exterior domain O and (b) an exterior domain O1 with an outer

boundary G1.
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