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A B S T R A C T

This article presents an original work on velocity and stress autocorrelation functions, memory functions,
spectral densities and atomic transport properties of two liquid alkali metals (sodium and potassium). For this,
we carried out molecular dynamics (MD) simulations using Green-Kubo relation under the condition of very
long-time duration to obtain reliable and accurate results.

An originality of the present work is that the interatomic forces are described by pair potentials built within
the “first principles” pseudopotential formalism using the non-local and energy dependent model potential of
Shaw. It is completely free of adjustable parameters since the energy dependent parameters are determined self-
consistently at the Fermi energy on an absolute energy scale. The Green-Kubo relationship is the main theoretical
tool that allows us determining the atomic transport coefficients from appropriate time-autocorrelation func-
tions. An important new result concerns the memory function. We demonstrate, for the first time to our
knowledge, that it can be depicted as a sum of wavelets. The wavelets with their amazing features emphasize the
nature of dynamic processes at the microscopic level. We also compared, for the first time to our knowledge, the
spectral density associated to the velocity autocorrelation function (VACF), to experimental values obtained by
incoherent inelastic neutron scattering. Finally, the temperature dependence of the self-diffusion coefficient (our
previous study) and that of shear viscosity (present work) are both in excellent agreement with experiment.

1. Introduction

Atomic transport phenomena certainly have a great importance
both from a theoretical point of view as well as for the various tech-
nological applications. It is still a relevant research area [1–5]. Indeed,
the knowledge of atomic transport coefficients is crucial, as they are
input parameters in some hydrodynamic equations [6, 7]. In the past,
Green [8] and Kubo [9] gave a famous relationship by which one can
evaluate the atomic transport coefficients. This equation, related to the
fluctuation-dissipation theorem [10, 11], involves integrals of relevant
time autocorrelation functions. Subsequently, many investigators
brought important refinements to the theory [12–21]. Progress was
particularly stimulated by the development of molecular dynamics si-
mulations [22, 23] as well as by the inelastic neutron scattering ex-
periments [24] or by spin-echo techniques [25]. Such experimental
results on dynamical properties are unfortunately very scarce. This is
the main reason why we also need conventional methods [26, 27] to
determine experimentally the atomic transport coefficients. However,

the experimental data are relatively scattered. This is due to the in-
accuracy of such experiments [2, 4].

Most physical properties such as those considered in this paper, are
very sensitive to interacting forces between particles. It follows that
accurate prediction of the atomic transport coefficients by using the
Green-Kubo relationship requires precise molecular dynamics (MD)
computations of relevant autocorrelation functions [1–4, 22, 23]. Due
to the complexity of the atomic dynamics of ions, the interacting forces
are described in terms of an “effective” pair potential Veff(r) [1, 28, 29].
In principle, the pair approximation [19] is only valid for simple liquids
like alkali metals. For metals that are more complex the concept of
“effective” potential corresponds to a pair potential having the same
effect that all the interactions (including triplet and higher-order in-
teractions). Within the framework of the theory, it has been shown that
there is a relationship between the pair correlation function g(r) and the
effective potential Veff(r) [19, 30]. This potential can be derived from
electronic structure calculations following the axiomatic principles of
the well-documented pseudopotential method [1, 31, 32]. In our work
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we used the “first principles” Optimized Model Potential (OMP) given
by Shaw [31] and its successive improvements. The calculation of the
OMP parameters has always been a central problem. Unlike Shaw's
original paper that requires the knowledge of experimental values of
the ionization and cohesive energies, for our effective potential calcu-
lations we obtained the pseudopotential parameters in a self-consistent
manner [1, 33]. Importantly we suitably screened the bare model po-
tential, a non-local and energy-dependent operator, following the “first
principles” requirements [1, 31, 32]. We used the Ichimaru and Utsumi
[34, 35] dielectric function, considered as one of the best. We checked
the validity of the OMP model in our previous study on liquid alkali
metals [1], in which we determinate their ionic structure and studied
the self-diffusion. We already published [1] the important results for
the individual transport properties (self-diffusion process). Unlike the
viscosity, the diffusion of liquid alkali metals has been systematically
studied in the literature [36–45]. We now complement our first work by
collective transport properties (viscosity) in the current paper. We also
calculate the memory function within the generalized Langevin equa-
tion [6, 45, 46] and using our new wavelet expansion [47].

This paper is written as follows. In section 2, we outline the main
features of the relevant autocorrelation functions that we used to de-
scribe the atomic transport properties. We explicitly highlight the
Green-Kubo equation to calculate the Stress Autocorrelation Functions
(SACF) for viscosity and spectral density (subsection 2.1). All auto-
correlation functions satisfy the generalized Langevin equation (sub-
section 2.2). Rewritten otherwise, the latter is the Volterra integral
equation of the second kind for the so-called memory function. More-
over, we show that the Volterra integral equation admits a formal so-
lution given by wavelet decomposition. In section 3, we detail the
conditions under which we performed our molecular dynamics (MD)
calculations. We comment upon our most relevant results in section 4.
Finally, in section 5, we conclude and summarize the main results of
this work.

2. Some theoretical aspects of atomic transport properties

The Green-Kubo relationship [8, 9] that involves integration of
appropriate time-autocorrelation functions, leads to the evaluation of
transport coefficients. The Green-Kubo integral is one of the many
forms of the fluctuation-dissipation theorem [10, 11].

2.1. Time-autocorrelation function and the Green-Kubo formalism

We can express the velocity autocorrelation function (VACF) [7] as
the statistical ensemble average:

= 〈
→

⋅
→

〉φ t V t V( ) ( ) (0) /3 (1a)

where
→
V t( ) is the velocity of a tagged particle at time t. The cor-

responding spectral function φ(ω), also called the power spectral den-
sity, is defined as the Fourier transform:

∫= −
−∞
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2π
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Similarly, the stress autocorrelation function (SACF) is the result of
the following ensemble average:
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B

αβ αβ
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where σαβ are the off-diagonal components of the microscopic stress
tensor which involves atomic positions and velocities as well as the
pairwise interactions [6, 23]. The terms kB, T and Ω are respectively the
Boltzmann's constant, the absolute temperature and the volume of the
system. So, the shear (or dynamical) viscosity is obtained as follows:

∫=
∞

η ζ t dt( )
0 (2b)

The shear modulus G∞(0) is given by [19]

= =∞G ζ t(0) ( 0) (2c)

The time characteristic known as the Maxwell relaxation time [19]
is:

= ∞τ η G/ (0)η (2d)

Broadly speaking, if C(t) is an autocorrelation function (either φ(t)
or ζ(t)), one can associate its spectral density C(ω) and its Laplace
transform ∼C z( ). Therefore, we can also get the transport coefficient K (D
or η) from the value of this spectral density: C(ω=0)=K/π.

2.2. The generalized Langevin equation and the associated memory function

Motions of atoms in liquids are a stochastic process. The generalized
Langevin equation [6, 45, 46] that governs the time evolution of any
autocorrelation function C(t) is given by the following integro-differ-
ential equation:

∫= − −C t M t τ C τ dτ̇ ( ) ( ) ( )
t

0 (3a)

The commutativity of the convolution product allows writing:

∫= − −C t C t τ M τ dτ̇ ( ) ( ) ( )
t

0 (3b)

The differentiation of (3b) with respect to time leads to the linear
Volterra integral equation of the second kind:

∫= − − −M t C t C t τ M τ dτ( ) ¨ ( ) ̇ ( ) ( )N

t

N
0 (3c)

Now M(t) is the unknown memory function and the kernel of Eq.
(3c) is given by C ṫ ( )N , the first derivative with respect to time of the
given normalized autocorrelation function CN(t)= C(t)/C(t=0). We
can write:

= = − =
=

≡M t C t
C t
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¨ ( 0)

( 0)
Ω0

2

(3d)

In the context of diffusion process, Ω0 is the Einstein frequency. The
latter can otherwise be calculated from the radial distribution function g
(r) and from the pair potential Veff(r) [6, 19]. Both functions M(t) and
CN(t) (or else C(t)) provide the same information, as we will show
below.

Indeed, when Eq. (3a) is solved by Laplace transform. We get:

= − +∼ ∼ −C z i z M z( ) [ ( )]N
1 (4a)

otherwise rewritten:

= + = ∼∼M ω iω C t C ω( ) ( 0)/ ( ) (4b)

The “friction like coefficient”, ξ, is defined as:

∫= = =
=

≡ =
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∞
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The Volterra integral Eq. (3c) has the formal solution:

∫= − − −M t C t R t τ C τ dτ( ) ¨ ( ) ( ) ¨ ( )N

t

es N
0 (5)

The resolvent Res(t) in (5) can be expanded in infinite series to yield:

∑=
=

∞

M t m t( ) ( )
S

S
0 (6a)

We define the memory function calculated at the S-th order by:

N. Harchaoui et al. Journal of Non-Crystalline Solids 499 (2018) 350–359

351



Download English Version:

https://daneshyari.com/en/article/7899578

Download Persian Version:

https://daneshyari.com/article/7899578

Daneshyari.com

https://daneshyari.com/en/article/7899578
https://daneshyari.com/article/7899578
https://daneshyari.com

