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A B S T R A C T

A novel approach to determine conduction mechanisms in complex amorphous materials was presented and
tested on a real system. In the first step of the presented method, total electrical admittance of the material is
analyzed in order to separate a couple of processes, each of which can be described by Jonscher's universal
dielectric response. In the following step, a temperature dependence of dielectric response parameters of the
processes is determined and compared with known models of conduction mechanisms in structural amorphous
materials. Using this approach, a presence of two different conduction mechanisms describing electrical con-
ductivity in a two-phase glass was described.

1. Introduction

The characteristic property of dielectric materials is a strong dis-
persion of the ac conductance (Y′). At low frequencies, one observes a
frequency-independent dc conductance (Ydc), while at higher fre-
quencies conductance usually varies as a power of the frequency, what
overall may be written as Eq. (1):

′ = +Y ω Y Aω( ) ,dc
n (1)

where ω=2πf is an angular frequency, and parameters A and n can be
temperature dependent. The increase in conductance usually continues
up to phonon frequency (ωph≈ 1012 s−1) [1].

In a series of publications, Jonsher [1–4] proposed and demon-
strated the utility of Eq. (1) in order to analyze the ac conductivity in
amorphous systems. This relation found application in almost every
disorder solid and therefore it was named as a universal dielectric re-
sponse (UDR). Further, it has been found [4] that UDR (Eq. (1)) may be
written in a full complex form in terms of admittance (Y*) as:
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where j is an imaginary unit, τ is a relaxation time of a conduction
process and exponent parameter n is less than one. The relaxation time τ
is often replaced by a frequency (ω0= τ−1) of charge carrier hopping
between active sites. As can be seen, Eq. (1) is exactly a real part of Eq.
(2).

Much effort was done to create theoretical models, which explain

the frequency and temperature dependencies of electrical properties.
The most used models [5, 6] are based on an assumption that a charge
carrier moves between localized sites separated by finite distances and
energy barrier potentials. There are several popular models of electrical
charge transport, which describe the conductivity behavior of amor-
phous materials: small polaron hopping (SPH) [8], overlapping large
polaron hopping (OLPH) [9, 10], correlated barrier hopping (CBH)
[11], quantum mechanical tunneling (QMT) [9] and continuous time
random walk (CTRW) [12, 13]. For all mentioned models, Elliott [6]
calculated that exponential factor n in UDR equation (Eq. (1)) should
vary in a different fashion with temperature. According to Elliott's
calculations [6], parameter n for QMT and CTWR models should be
temperature independent, while with an increase in temperature it
should decrease for CBH or increase for SPH. Only for OLPH ex-
ponential factor n may increase or decrease with increase in tempera-
ture, and the direction of changes depends on conduction process
parameters like polaron radius, activation energy and decay of electron
wave function. Since in many materials [5–7] the exponential factor n,
obtained by fitting admittance to Eq. (2), is temperature dependent, it is
possible to determine conduction process mechanisms by comparing
experimentally obtained n= f(T) function with theoretical models
[14].

Usually, to determine electrical properties of different relaxation
processes, the conductance of the system is modeled by equivalent
electrical circuits composed of discrete components like resistors, ca-
pacitors, constant phase elements (CPE) or Warburg's elements.
Although these elements can be arranged in many different
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configurations, two of them are commonly used i.e., Voigt and Maxwell
networks (Fig. 1a and Fig. 1b respectively) [7]. Depending on the
configuration, different information about the same analyzed system
can be evaluated. For instance in Voigt network, each of Ri and CPEi
elements in the circuit can be related to certain resistance and capaci-
tance of conducting region. In Maxwell network, the global R1 and CPE1
parameters may be related to resistance and capacitance of process
extended to the whole system, while Ri and CPEi (for i > 1) refer only
to the resistance and capacitance of electrical conduction process which
is blocked.

A simple Voigt circuit characterized by a presence of two relaxation
processes and built of two resistors and two CPEs is shown in Fig. 1a. As
admittance of CPE is described by Eq. (3):
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then total admittance of a single R− CPE sub-circuit is defined by
Eq. (4):
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The admittance described by Jonscher's UDR equation (Eq. (2)) and
of a simple R− CPE circuit (Eq. (4)) is mathematically equivalent what
has been shown by Macdonald [7]. In a consequence, the admittance of
the whole Voigt circuit shown in Fig. 1a can be described by Eq. (5):

=
+

=
+ +

+ + +
∗

∗ ∗

∗ ∗Y
Y Y

Y Y
R A jωτ R A jωτ

R R A jωτ R R A jωτ
(1 ( ) )(1 ( ) )

(1 ( ) ) (1 ( ) )
,

n n

n n
1 2

1 2

1 1 1 2 2 2

1 2 2 2 2 1 1 1

1 2

2 1 (5)

while the admittance of equivalent Maxwell circuit (Fig. 1b) may be
expressed by Eq. (6):
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where n1 and n2 are constants, τ1 and τ2 define a characteristic time
of a relaxation processes, while A1R1(jωτ)n1 and A2R2(jωτ)n2have unit
equal to 1.

One of the example of disordered materials, which exhibit two re-
laxation processes in their conductivity curves, is double-phase glasses.
An interpretation of its electrical properties is especially interesting
when it is produced without an addition of alkali metal ions because the
most possible mechanism of charge movement in both phases is polaron
hopping exhibiting different physical properties [5]. In the present ar-
ticle, the method of conduction mechanisms analysis is presented for
any system characterized by two relaxation processes of charge trans-
port. Next, this method was applied to a real glass system 50MnO –

30SiO2 – 20B2O3 (in mol%) not containing alkali ions and exhibiting
uniform phases separation. Finally, models accurately describing the
conductivity of founded processes were determined.

2. Experimental

The glass of a composition of 50MnO - 30SiO2 - 20B2O3, was pre-
pared using appropriate amounts of analytical grade: MnO2 (Sigma-
Aldrich), SiO2 (POCH), and H3BO3 (POCH) powders. The stoichiometric
composition of reagents was mixed manually in an agate mortar and
heated up in a muffle furnace in a platinum crucible. The mixture was
melted at 1500 K for 30min in air. The melt was quenched by pouring
on a preheated to about 500 K brass plate and pressing by another plate
to obtain flat circular pellets of 1–1.3mm thickness and 10–20mm in
the diameter. In order to study properties related to the bulk material,
before measurements, a surface layer was removed from pellets by
grinding with a dry sandpaper. Powder X-ray diffraction (XRD) mea-
surement was done at room temperature on PANalytical X'Pert Pro MPD
using the CuKα radiation in order to check the glass structure. The
microstructure of the sample was investigated with FEI Quanta 250 FEG
Scanning Electron Microscope (SEM). Before measurement, glass
sample was covered by a 20 nm gold layer with a vacuum sputtering
equipment.

Electrical properties were examined by impedance spectroscopy
measurements, which were carried out in the temperature range of
445 K - 760 K with the Novocontrol Concept 40 broadband dielectric
spectrometer. The used frequency range was from 10 mHz to 1MHz and
the ac signal was 1 Vrms. Before measurements, the pellet of glass was
polished to obtain plane parallel samples. Circular gold electrodes of
9–12mm in the diameter were deposited by vacuum sputtering on
sample basal surfaces. The measurement error of electrical properties
was minimalized by calibration impedance spectrometer by a calibra-
tion procedure using 100Ω resistors. On the other hand, random errors
were minimalized by performed measurement for every point at least 3
times.

3. Method

An analysis of possible mechanisms of charge carrier movement in
the glass, characterized by two relaxation processes, was performed. It
was done based on a frequency and temperature behavior of ad-
mittance. The analysis of admittance parameters consisted of few steps.
In the first step, an equivalent electrical circuit (combined of resistors
and CPEs) is proposed, which represents as many relaxation processes
as are observed in a measured system. In the second step, the equation
describing admittance of the equivalent circuit is used for fitting the
measured data. Depending on the interesting properties of the system,
equations describing Voigt (Eq. (5)) or Maxwell (Eq. (6)) networks can
be fitted to the admittance data. For instance, using Voigt network to
analyze two phases, material R1 and R2 are resistances of these phases,
while τ1 and τ2 – their relaxation time. It can be seen, that four para-
meters (i.e., Ai, Ri, τi, and ni) correspond with each relaxation process.
The fitting procedure is performed simultaneously on the real and the
imaginary part of admittance using least-squares methods (Levenberg-
Marquardt algorithm [15]). Next, obtained parameters (especially n
factors) are analyzed as a function of temperature. Finally, the relations
describing different conduction mechanism models are fitted to ni= f
(T) function and obtained parameters are compared with the real va-
lues. All measurement data were analyzed and fitted using OrignPro9.1
software with implemented complex numbers library. Standard errors
for the derived parameters were estimated according to the error pro-
pagation formula, which in OroginPro9.1 is an approximate formula
[16].

Fig. 1. Scheme of simulated electrical circuits with two relaxation times a)
Voigt and b) Maxwell networks.
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