

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/locate/jnon-yournal homepage: $\frac{1}{2}$

The evolution of the network structure in tin-fluoro-phosphate glass with increasing temperature

Huan Li, Shuai Liu, Tianci Zhang, Hong Wu^{*}, Shaoyun Guo^{*}

The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China

1. Introduction

Tin-fluoro-phosphate glass (TFP-glass), which is composed of crosslinked network structure based on phosphate anion tetrahedron $[PO_4]$ and coordinated with metal cation, has attracted considerable attentions of polymer researchers in the past decades [[1](#page--1-0)[,2\]](#page--1-1). Compared with traditional inorganic fillers, TFP-glass exhibits a relatively low glass transition temperature (T_g) , which allows them to be melt blended with polymer matrix using traditional polymer processing methods [[3](#page--1-2),[4](#page--1-3)]. The fluidity of TFP-glass during processing makes it possible to prepare composites containing up to 90 vol% TFP-glass without the intractable viscosity problems [[5](#page--1-4)], and also makes it possible to regulate its morphology to fulfill some special requirements [\[6,](#page--1-5)[7\]](#page--1-6). More importantly, the hydroxyl groups (-OH) and activated sites on the surface of TFPglass [[8](#page--1-7),[9](#page--1-8)] are the structural basis for the formation of strong interfacial interaction in polar polymer/TFP-glass composites [\[10](#page--1-9)[,11](#page--1-10)].

Many works have been done to investigate the interfacial interaction between TFP-glass and polar polymers [12–[14\]](#page--1-11). The chi interaction parameter (χ) for polyamide 6 (PA6)/TFP-glass [[14\]](#page--1-12) and Poly (ethylene terephthalate) (PET)/TFP-glass [\[2\]](#page--1-1) composites are calculated to be −0.067 and − 0.075, respectively, indicating that the two components in each composite are indeed miscible in melt state. The miscibility is attributed to the hydrogen bonds (H-bonds) formation between the functional groups in polymer and –OH in TFP-glass. It is worthy to note that the interfacial interaction between polymer and TFP-glass exhibits a strong temperature-dependency. The miscibility between the components in PA6/TFP-glass [[14,](#page--1-12)[15](#page--1-13)] and PET/TFP-glass [[2](#page--1-1)] composites is reduced to be partial as temperature decreases to room temperature. As temperature increases from 190 °C to 250 °C, the morphology and rheological behavior of polyamide 12 (PA12)/TFP-glass [\[16](#page--1-14)] composite are changed greatly and the reason is attributed to the enhancement of the interfacial interaction. Although the positive correlation between temperature and the interfacial interaction in polar polymer/TFP-glass composites has been observed, the mechanism is still unclear.

guideline for the preparation of polar polymer/TFP-glass composites with strong interfacial interaction.

Generally, the interfacial interaction between the components in polymer/filler composites is strongly dependent on the structure of the filler and the functional groups on its surface [17–[19\]](#page--1-15). Fox example, the interfacial interaction between graphene oxide (GO) and nylon matrix is enhanced by Roy and his co-workers via introducing amine groups on GO surface [\[20](#page--1-16)]. It is well known that the dimension of the network in phosphate glass, which can be reflected by T_g , and the number of -OH groups on its surface are very sensitive to its thermal histories (temperature, melting time, annealing time et.). Ehrt [\[21](#page--1-17)] finds that tinphosphate glass prepared at a lower temperature (450–550 °C) shows a T_g of 150–200 °C and higher –OH content, while TFP-glass prepared at a higher temperature (800–1200 °C) has a T_g of 250–300 °C and lower –OH content. Gupta et al. [\[6\]](#page--1-5) proposes a preparation procedure for synthesizing TFP-glass, which results in a TFP-glass with a T_g of 118 °C. Liu et al. [[9](#page--1-8)] shortens the melting time from 70 min to 60 min but prolongs the annealing time from 90 min to 180 min, resulting in the

⁎ Corresponding author.

<https://doi.org/10.1016/j.jnoncrysol.2018.03.052>

Received 30 December 2017; Received in revised form 23 February 2018; Accepted 29 March 2018 Available online 24 April 2018

0022-3093/ © 2018 Elsevier B.V. All rights reserved.

E-mail addresses: wh@scu.edu.cn (H. Wu), sguo@scu.edu.cn (S. Guo).

Table 1

The synthesizing conditions for TFP-glass samples.

Sample	Composition in molar ratio Melting temperature/ $SnF2: SnO: NH4H2PO4$	°C.	Melting time/ min
$TFP-glass-1$ 5:2:6		420	20
TFP-glass-2		430	20
TFP-glass-3		440	20
TFP-glass-4		440	30

increment of T_g to 137 °C. The thermal-induced changes in the dimension of the network in TFP-glass and –OH content on its surface should have a great influence on the interfacial interaction between TFP-glass and polar polymers and therefore provide the plausible mechanism for the temperature-dependency of the interfacial interaction in polar polymer/TFP-glass composites.

Understanding the evolution of the network in TFP-glass with increasing temperature will help us elucidate the mechanism for the positive correlation between temperature and the interfacial interaction in polar polymer/TFP-glass composites and fundamentally understand the strong interfacial interaction between them, and thus provide guidance to prepare polar polymer/TFP-glass composites with strong interfacial interaction. The improvement of interfacial interaction is facilitate us to tune the morphology of TFP-glass dispersed in polar polymer matrix and eventually enhance the performances of the composite. Therefore, in this work, four kinds of TFP-glass samples with different dimensions of network and –OH content on its surface are synthesized by changing preparation condition. The thermal behavior of these four TFP-glass samples is investigated. And then taking one of them as an example, the chemical structure of the network is studied by FT-IR and XPS tests. The evolution of the network structure with increasing temperature is explored via two-dimensional infrared spectroscopy (2D-IR) and rheological test. Additionally, in order to verify the contribution of the evolution of the network structure in TFP-glass to the interfacial interaction in Poly (ethylene terephthalate) (PET)/TFP-glass composite, which has been reported most recently to be enhanced at elevated temperatures, the structure and the thermal behavior of TFP-glass extracted from PET/TFP-glass composite were investigated.

2. Experimental methods

2.1. Materials

The tin oxide (SnO, 99.9%) and ammonium dihydrogen phosphate $(NH_4H_2PO_4, 98%)$ were purchased from Bailingwei Co. and the tin fluoride (SnF₂, 97.5%) was obtained from Alfa Co.

2.2. Preparation of TFP-glass samples

TFP-glass samples with the composition in molar ratio of 50% $SnF₂ + 20\%SnO + 30\%P₂O₅$ were prepared using $SnF₂$, SnO, $NH₄H₂PO₄$ as the starting materials. The ingredients were accurately weighted and added into a mortar to mix. The uniform mixture was then transferred into a corundum crucible. The crucible was placed into a muffle furnace and melted for 20 or 30 min. The melting temperature was 420, 430 and 440 °C, respectively. Before the raw material mixture put in, muffle furnace is pre-heated to the corresponding melting temperature and allowed to equilibrate for at least 30 min. The glass melt was then poured onto a stainless steel plate and cooled down to room temperature. The obtained block solid glass was at last ground into powder with diameters smaller than 25 μm for characterizations. TFP-glass samples prepared at different conditions have been marked with Arabic numerals as shown in [Table 1.](#page-1-0)

2.3. Extraction of TFP-glass from PET/TFP-glass composite

In order to verify the contribution of the evolution of the network structure in TFP-glass to the interfacial interaction in Poly (ethylene terephthalate) (PET)/TFP-glass composite, the structure and the thermal behavior of TFP-glass extracted from PET/TFP-glass composite were investigated. Firstly, PET/TFP-glass composite containing 10 vol% TFP-glass was melt blended using a Hapro Rheometer (RM-200C) equipped with roller rotors at a temperature of 270 °C with a rotor speed of 60 rpm for 8 min. Secondly, the PET/TFP-glass composite was dissolved at room temperature in a mixed solution of phenol and tetrachloroethane (1:1 mass ratio), in which PET was soluble but TFP-glass was insoluble. The solution was stirred for 72 h and then let stand for 72 h to separate into layers. The TFP-glass settled at the bottom of the container is obtained after repeated washing and centrifugation.

2.4. Characterizations

Differential scanning calorimetry (DSC) was performed using TA Q20 to determine the glass transition temperature (T_g) of the TFP-glass samples. The TFP- glass powders was encapsulated in an aluminum pan and first heated from 40 °C to 280 °C with a heating rate of 10 °C/min and then maintained for 5 min to eliminate the heat history. Then they were cooled to 40 °C at 10 °C/min and reheated under the same condition. The test was carried under nitrogen atmosphere and the second heating was recorded.

Fourier transform infrared spectra (FT-IR) were recorded with a Thermo Nicolet Smart IS10 FT-IR spectrometer in the frequency range 400–4000 cm^{-1} at room temperature. Sample pallets were prepared by

Fig. 1. Normalized FT-IR spectra of TFP-glass samples prepared at different synthesizing conditions in the region (a) 1350–700 cm $^{-1}$ and (b)1800–1300 cm $^{-1}$

Download English Version:

<https://daneshyari.com/en/article/7899834>

Download Persian Version:

<https://daneshyari.com/article/7899834>

[Daneshyari.com](https://daneshyari.com)