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A B S T R A C T

Based on the free volume, shear transformation zone and percolation theory, a new percolation model has been
established to investigate the ductile-brittle transition in amorphous alloys. Taking the binary Cu25Zr75 amor-
phous alloy for example, the influence of the free volume concentration and flow unit dispersity on its perco-
lation threshold value was analyzed. The results show that the concentration of flow units reach a critical value
when the ductile-brittle transition occurs in the Cu25Zr75 amorphous alloy, and this critical value is independent
of the concentration of the free volume but dependent on the dispersity of flow units. Furthermore, the per-
colation threshold values of La-, Zr-, Cu-, Pd-, Fe-, Sr- and Tm-based amorphous alloys were also calculated, a
percolation threshold value of ~0.516 for ductile-brittle transition in these amorphous alloys was obtained.
Therefore, our analysis results suggest that ~0.516 appears to be a universal percolation threshold value for
ductile-brittle transition in amorphous alloys.

1. Introduction

Since a glassy state is usually obtained by rapidly freezing the liquid
to avoid crystallization, the structure and many properties of amor-
phous alloys (or metallic glasses, MGs) are inherited from supercooled
liquid [1,2]. Many exotic mechanical properties of MGs have attracted a
lot of interest, such as ultrahigh strength, superior elasticity, and ex-
cellent thermo-plasticity [3–6], originating from the disordered atomic
structures [7,8]. However, due to some common structural defects (for
instance, dislocations and slips) do not exist in amorphous alloys, most
MGs exhibit poor ductility at room temperature because their plastic
deformation is highly localized into shear bands [9–11]. Therefore, the
solution to the key problem of plastic deformation will be very bene-
ficial for the extensive application of MGs.

It seems to be well-known that an amorphous solid that exhibits a
glass transition is called a glass, and the glass transition can take place
upon applying stress or heating, cause they have the same evolutionary
process of microscopic structure, i.e., “strain-temperature equivalence”
[12–14]. Thus, several significant theoretical models in describing this
flow and evolution of structure have been made in the past years. A free
volume model based on the single atom transition was proposed by
Spaepen [15], a shear transformation zone (SZT) model based on the
cooperative shear motion of atomic clusters (ACs) was proposed by
Argon [16], in addition, the flow unit model was introduced by Wang
[17] and the tension transformation zone (TTZ) model was introduced

by Jiang [18]. Anyhow, although these theoretical models have their
own scope of application, they do have considerable implications for
understanding “flow events” and plastic deformation of amorphous
alloy.

According to the free volume model, a critical reduced free volume
(RFV) value of xC~2.4% for the onset of yielding in most MGs has been
found by Wang [19]. So another interesting question about what is the
critical value of STZ for the onset of yielding attracted us, whereas this
question is not so easy to be solved because STZ is a dynamic defect,
which cannot be determined beforehand from an amorphous solid atom
image at a certain time. Therefore, in this paper, a percolation model
for the critical volume fraction of atomic clusters (ACs) in STZ as shear
bands initiate is established, we here regard ACs as the flow units.
When the density of ACs reaches a critical value, the percolation of flow
units occurs and the entire STZ can unjam from a frozen state into a
supercooled liquid state, so the different sizes of the shear bands will be
formed through the interconnectedness of some STZs, but only single
main shear band will expand rapidly through the self-organized beha-
vior of STZs and eventually lead to failure of MGs. The present work
may supplement a new result on studying the ductile-brittle transition
of MGs.

2. Methods

As shown in Fig. 1(a), there are some local sites in the MGs because
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of the statistical distribution of free volume [15], these liquid-like re-
gions where are rich in free volume, like black dotted line areas, have a
smaller viscosity, on the contrary, the viscosity of another solid-like
regions where are short of free volume is larger. In Fig. 1(b), all atoms
and free volume within black dotted line areas are called an Atomic
Cluster (AC), which is equivalent to the sphere stress volume (SSV)
according to the concept of BDT theory proposed by Wu [20], and the
free volume within AC can regard as the sphere free volume (SFV).
When shearing stress τ exceeds critical value τC, multiple SSVs will yield
and form a percolating network in STZ. Actually, the purpose of our
hypothesis is to take SSV as a “toughening particle”, the plastic de-
formability of MGs can attribute to the effect of the concentration of
“toughening particles” on the toughening of sample, such as amorphous
alloy foam material [21]. So what is the optimum concentration of
these “toughening particles” or the percolation threshold for ductile-
brittle transition of amorphous alloys?

2.1. The diameter d and volume fraction θf of SFV

In the free volume model, Spaepen thinks the strain rate of amor-
phous alloys is closely related to the free volume:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

× ⎛
⎝

⎞
⎠

× ⎛
⎝

− ⎞
⎠

∗
γ f f αv

v
τv
kt

G
kt

2 Δ exp sinh
2

exp Δ
f

a
m•

(1)

where f is the frequency of atomic vibration, Δf is volume ratio fraction,
α is a geometric factor between 0.5 and 1(our article is 0.75),
v⁎(va= 1.25v⁎, va is atomic volume) is the hard-sphere volume of an
atom, vf is the average free volume per atom, τis shearing stress, k is the
Boltzmann constant, t is the temperature, ΔGm is the activation energy
of atomic motion. RFV x is thus introduced by Wang [19]:

= ∗x v αv/( )f (2)

They found a critical RFV value of xC ~ 2.4% for the onset of
yielding is universal for MGs. Furthermore, as shown in the Fig. 1(b),
the RFV x can also be written as:
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where n is the number of atoms within AC, and D is atomic average

diameter, but the atomic average radius [22] is ⎜ ⎟= ⎛
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, Ai is

the volume fraction of atom which radius is ri in the amorphous alloy.
According to Eq. (3), the diameter d of SFV is determined from x and n
because D is a constant for a given MG. In addition, the volume fraction
of SFVs is:

= + ∗θ v v v/( )f f f (4)

By Eqs. (2), (3) and (4), the relationship between diameter d and
volume fraction θf of SFVs can be obtained:
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So the relationship between θf and d will be affected by the number
of atoms n, in fact, different n reflects the different size of flow units in
MGs. Therefore, we take the binary Cu25Zr75 amorphous alloy as an
example to investigate the relationship between θf and d under different
size of flow units.

Initially, D1= 0.256 nm and D2= 0.32 nm are from Ref [23],
where D1 and D2 are respectively the minimum and maximum atomic
diameter of Cu25Zr75 amorphous alloy system. Atomic average diameter
D is 0.306 nm, moreover, the critical diameter dC is between dmin=D1/
(1.25)1/3 and dmax=D2/(1.25)1/3 for the onset of yielding in MGs
based on free volume model, so the size of flow units in Cu25Zr75
amorphous alloy system, namely, the n will vary from 33 to 64 calcu-
lated by Eq. (3). Then, considering that the RFV x varies from the initial
value 0.008 [24] to critical value 0.024 [21], the volume fraction θfof
SFVs is thus from 0.006 to 0.018, correspondingly. Last, scatter points
in Fig. 2 show the nonlinear relation between θf and d when n is 35, 45,
55 and 65, respectively.

We noticed that the critical values dC are in the range of 0.2–0.3 nm,
it is generally understood that voids of this size are not stable in MGs,
but it does not mean that our model is wrong, SFV does not really exist
and is just a hypothesis. Furthermore, According to Wu's research on
polymers, the relationship between d and θf can also be approximately
expressed as following:
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Fig. 1. (a) The schematic of atomic structure of MGs in a 2-D system, the black dotted line
areas are ACs, the red dotted line areas are free volume; (b) The schematic of equivalent
SSV, and d is diameter of SFV, S is diameter of SSV, TC is the critical thickness between
SSVs. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2. The evolution of diameter d of SFV under different volume fraction θf of SFV when
n is 35, 45, 55 and 65, respectively. The scattered points are theoretical results, the solid
curves are correspondingly fitted results. The parameter TC is obtained by fitted function
d= TC{[π / (6θf)]1/3− 1}−1, the correlation coefficient R2 of the fit for four curves is all
about 0.88.
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