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A B S T R A C T

Software implementations of thermodynamic property routines for ammonia-water mix-

tures are developed for refrigeration and air-conditioning applications. Saturation correlations

are employed to identify single-phase state points, yielding up to a 5-fold reduction in prop-

erty evaluation time.A run-time database of previously evaluated state points is implemented

to improve initial guesses for iterative property evaluation, reducing property evaluation time

by 45% in a representative study.The property routines are implemented in a standalone program

and as a compiled routine for use in MATLAB® and Simulink®. Both implementations perform

property evaluations significantly faster than existing software packages. Program perfor-

mance is measured on a 2.2 GHz machine, and average individual state point evaluation times

were found to range from 50 to 930 μs, depending on the provided input properties. Addi-

tionally, a segmented, transient, ammonia-water absorber model is developed in Simulink®

to assess the use of the property routines for practical engineering calculations.The proposed

computational techniques can be applied to accelerate property evaluations for other mixtures.
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1. Introduction

1.1. Background

The ammonia-water fluid pair is employed in a broad range
of energy systems including absorption refrigeration, heat

pumping, and even power generation through the Kalina cycle
(Heppenstall, 1998). As these ammonia-water technologies are
refined, and specialized two-phase heat and mass exchang-
ers are developed, the demands on thermophysical property
formulations, and the software implementations thereof, are
greatly increased.The major objectives in the development and
implementation of property formulations are outlined below.
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Nomenclature

a, b, c, d coefficient for empirical property expression [–]
A, B, C, D, E, F dimensionless coefficient for empirical property expression [–]
A heat transfer area, in absorber model [m2]
cp specific heat at constant pressure [kJ kg−1 K−1]
E error at a specific iteration [–]
g specific Gibbs free energy [kJ kg−1]
h specific enthalpy [kJ kg−1]
H total enthalpy, in absorber model [kJ]
J Jacobian matrix, in iterative solver [−]
k thermal conductivity [W m−1 K−1]
l segment length, in absorber model [m]
m segment mass, in absorber model [kg]
�m mass flow rate, in absorber model [kg s−1]

M molar mass of mixture [kg kmol−1]
P pressure [kPa]
Q quality [–]
r residual vector, in iterative solver [−]
R gas constant [kJ kg−1 K−1]
s specific entropy [kJ kg−1 K−1]
t time, in absorber model [s]
T temperature [K]
u specific internal energy [kJ kg−1]
UA heat transfer conductance value, in segmented absorber model [W K−1]
v specific volume [m3 kg−1]
V segment volume in absorber model [m3]
x, y liquid and vapor ammonia mass concentrations [kg kg−1]
x y, liquid and vapor ammonia molar concentrations [kmol kmol−1]

Subscripts
0 reference value for saturation correlations, and reference state in absorber model
1,2. . . coefficient index
a ammonia
aw ammonia-water mixture sub-domain of absorber model
B base value, for computing reduced properties
bub bubble point (Q = 0, y = 1)
cf coupling fluid sub-domain of absorber model
DB value from property database
dew dew point (Q = 1, x = 0)
e, i . . .inlet/exit. . ., for each fluid segment of the absorber model
E excess energy, for ammonia-water liquid mixtures
i specific component (a – ammonia or w – water)
j segment of discretized absorber model
in provided input value
m, n exponents in saturation correlations
o reference dimensionless property
PK from Pátek and Klomfar saturation correlations
r reduced, dimensionless property
w water
w wall, in absorber model

Superscripts
0 initial guess, for iterative solutions
g gas phase
j specific phase (l – liquid or g – gas)
k current iteration
l liquid phase
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