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The nonlinear response to an oscillating field is calculated for a kinetic trapmodel with an exponential density of
states above the glass transition temperature T0. For temperatures not too close to T0, the results are similar to
those obtained for the model with a Gaussian density of states. The choice of the dynamical variable that couples
to the field and in particular its dependence on the trap energies generally has a strong impact on the shape of the
dynamic response. The modulus of the frequency dependent third-order response either shows a peak or ex-
hibits amonotonous decay froma finite low-frequency limit to a vanishing response at high frequencies depend-
ing on the dynamical variable. If a peak is observed, its height can show different temperature dependencieswith
the common feature of a scaling behavior near T0. Additionally, in some but not all cases the static nonlinear sus-
ceptibility diverges at T0. A recently proposed approximation that relates the cubic response to a four-time cor-
relation function does not give reliable results due to awrong estimate of the low-frequency limit of the response.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There have been many attempts to understand the heterogeneous
dynamics in supercooled liquids and glasses, cf. the reviews [1,2] and
references therein. In particular, the development of experimental tech-
niques to probe higher-order time correlation functions has played a
pivotal role in the development of our understanding of the nature
of the heterogeneities [3–8] and also the study of computer models
allowed one to gain insight into the structural and dynamical properties
of these correlation functions [9,10]. Also a length scale associated with
the heterogeneities has been extracted from specially designed NMR
experiments [11,12].

In addition to these approaches an additional way to extract a length
scale from a special four-point correlation function χ4(t) has been intro-
duced and discussed in detail [13–16].

By relating the nonlinear (cubic) response χ3(ω, T) to a four-point
correlation function, Bouchaud and Biroli showed how to extract a
length scale or equivalently the number of correlated particles, Ncorr,
from measured nonlinear response functions [17]. The modulus of the
cubic response function, |χ3(ω, T)|, was found to exhibit a hump-like
structure which is assumed to be a distinctive feature of glassy correla-
tions [18,19]. It is found that the maximum of |χ3(ω, T)| decreases with
increasing temperature and it is assumed to be proportional to Ncorr. If
glassy correlations are absent, a ‘trivial’ behavior is expected, i.e. a
smooth decay of |χ3(ω, T)| as a function of frequency.

It should be mentioned that nonlinear dielectric experiments on
supercooled liquids have also been interpreted in a slightly different

way with a stronger emphasis on the heterogeneous nature of the dy-
namics [20–22].

A nonlinear response theory forMarkov processes has been present-
ed in Ref. [23], to be denoted as I in the following. The theory was ap-
plied to the model of dipole reorientations in an asymmetric double
well potential (ADWP-model) [24,25]. For thismodel, |χ3(ω, T)| exhibits
a trivial behavior except for a small temperature range in the vicinity of
vanishing low-frequency limit χ3(0, T) for finite asymmetry. In addition,
model calculationswere presented for thewell-studied trapmodelwith
a Gaussian density of states [26–31] showing both, a peak or a trivial be-
havior, depending on the variable chosen and on temperature.

Furthermore, for some specific choice of the dynamical variable used
to probe the dynamics, the peak-maximum increases as a function of
temperature and for other choices it decreases. The results of the
model calculations suggest that a direct relation between the cubic re-
sponse function and some type of glassy correlations cannot be shown
to exist in these mean-field models. Also other calculations employing
specific models show a similar behavior, i.e. either the existence of a
hump or a trivial decay [32,33].

In addition, in Ref. [34], denoted as II in what follows, I considered
various four-time correlation functions and a particular approximation
for the cubic response for the Gaussian trapmodel. According to the ap-
proximations employed by Bouchaud and Biroli [17], the most domi-
nant contribution to the cubic response in the vicinity of a phase
transition is related to a four-time correlation function. For the Gaussian
trap model, it was found in II that the corresponding relation does not
give a sound description of |χ3(ω, T)| due to a wrong estimate of the
low-frequency behavior.

In the present paper, I will calculate the nonlinear response for the
trap model with an exponential density of states (DOS) instead of a

Journal of Non-Crystalline Solids 407 (2015) 61–65

E-mail address: diezeman@uni-mainz.de.

http://dx.doi.org/10.1016/j.jnoncrysol.2014.09.032
0022-3093/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

j ourna l homepage: www.e lsev ie r .com/ locate / jnoncryso l

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnoncrysol.2014.09.032&domain=pdf
http://dx.doi.org/10.1016/j.jnoncrysol.2014.09.032
mailto:diezeman@uni-mainz.de
http://dx.doi.org/10.1016/j.jnoncrysol.2014.09.032
http://www.sciencedirect.com/science/journal/00223093


Gaussian DOS. The most prominent difference between the twomodels
is that the exponential DOS gives rise to a glass transition at a tempera-
ture T0 belowwhich the system cannot equilibrate. Thus, there is a crit-
ical point in this model and one can investigate the nonlinear response
in the vicinity of this point. In the present paper, I will only consider the
high temperature phase where equilibrium is always reached. In the
next section, I will briefly recall the properties of the model and discuss
the modifications in the linear response resulting from a specific choice
of the dynamic variables. Section 3 is devoted to the discussion of the
nonlinear response and the paper closes with some conclusions.

2. Trap model with an exponential density of states

In a simple picture the complex dynamics of a glassforming system
can be described by collective transitions between inherent structures
or meta-basins in the energy landscape of the system [28,30,35].
Neglecting the correlations among the various energy minima, a very
simple stochastic dynamics can be defined in the following way [27].
The escape from a minimum or trap of energy ϵi takes place with a
rate κ(ϵi) and the destination trap of the transition, determined by
ϵf, is chosen at random, i.e. according to the density ρ(ϵf). Therefore,
the conditional probability to find the system in the trap character-
ized by the trap energy ϵ at time t provided it occupied trap ϵ0 at t0,
G(ϵ, t+ t0|ϵ0, t0)= G(ϵ, t|ϵ0, 0) ≡ G(ϵ, t|ϵ0) obeys the followingmaster
equation (ME):

G
�

ϵ; tjϵ0ð Þ ¼ −κ ϵð ÞG ϵ; tjϵ0ð Þ þ ρ ϵð Þ∫dϵ0κ ϵ0ð ÞG ϵ0; tjϵ0ð Þ: ð1Þ

Here, thefirst termdescribes the loss of probability due to the escape
from trap ϵ and the second term is responsible for the gain of probability
due to all transitions from ϵ′ to ϵ. A simple choice for the escape rate is
provided by an Arrhenius-like dependence on the trap energy,

κ ϵð Þ ¼ κ∞e
−βϵ ð2Þ

where a common activation energy is absorbed in the attempt frequen-
cy κ∞. The model with an exponential density of states (DOS) is defined
by [27]

ρ ϵð Þ ¼ βxe−βxϵ with x ¼ T=T0 ð3Þ

where β=1 / T and the Boltzmann constant is set to unity. Themotiva-
tion for this particular choice has its origin in the typical behavior of the
tails of the energy distributions in models for disordered systems, in
particular the random energy model, cf. Ref. [36]. The model so
defined gives rise to non-exponential waiting time distributions
and the relation of these to glassy dynamics has also been
discussed earlier [37–39]. In Eq. (3), T0 denotes the characteristic
temperature of the model, below which a stationary distribution
peq(ϵ) = limt → ∞G(ϵ, t|ϵ0) does not exist. The reason is that the
normalization of the distribution is given by the integral ∫ dϵρ(ϵ)eβϵ

which diverges for x b 1when ρ(ϵ) is given by Eq. (3). Above T0, one has

peq ϵð Þ ¼ β x−1ð Þe−β x−1ð Þϵ ð4Þ

and below T0 the system ages for all times. Themodel exhibits a number
of features that are reminiscent of what is observed in glassy systems
above and below T0. In particular, the aging dynamics below T0 has
been investigated in detail [27,40]. In the present paper, I will solely
consider temperatures above T0, i.e. x N 1, where equilibrium is always
reached and aging is unimportant. The results can be compared with
the model with a Gaussian DOS, ρ ϵð Þ ¼ 1=

ffiffiffiffiffiffiffi
2σ

p� �
exp −ϵ2= 2σ2

� �� �
,

that does not show a glass transition but slow dynamics and non-
exponential relaxation.

The two-time correlation function (2t-CF) of a variableM(t) in gen-
eral is given by:

M tð ÞM t0ð Þh i ¼ ∫dϵ∫dϵ0M ϵð ÞM ϵ0ð ÞG ϵ; t−t0jϵ0ð Þpeq ϵ0ð Þ: ð5Þ

The quantityM(t) might for example represent a magnetization or a
dipole moment. Generally, M(t) is time-dependent due to its depen-
dence on the trap energy, M(t) = M(ϵ(t)) and the time-dependence of
ϵ is governed by Eq. (1). Thus, one has to determine the ϵ-dependence
of M. In a naive picture one could for instance assume that high energy
regions correspond to low density regions and that the dipole moment
varies with the latter. As in papers I and II [23,34], a Gaussian approxi-
mation for the correlations of the dynamical variablesM(ϵ) will be used,

M ϵð Þh i ¼ 0 and M ϵð ÞM ϵ0ð Þh i ¼ δ ϵ−ϵ0ð Þ M ϵð Þ2
D E

: ð6Þ

For a fully connected trap model one has (changing to the common
notation [27])

Π tð Þ ¼ ∫dϵ M ϵð Þ2
D E

peq ϵð Þe−κ ϵð Þt
: ð7Þ

This function has a simple interpretation. Each transition out of the
trap with energy ϵ completely decorrelates the variable and gives rise
to a decay. For 〈M(ϵ)2〉=1, it has been shown that the long-timebehav-
ior of Π(t) is given by Π(t) ∼ t−(x − 1) [27].

Throughout the present paper, I will use an Arrhenius-like energy
dependence of 〈M(ϵ)2〉 that first has been considered by Fielding and
Sollich [40] in their treatment of the violations of thefluctuation dissipa-
tion theorem for the trapmodel and that I have used also in papers I and
II [23,34]:

M ϵð Þ2
D E

¼ e−nβϵ ð8Þ

where n is an arbitrary real constant. In particular, the choice n=0 rep-
resents a variable that is independent of the trap energy. IfM is viewed
as a dipole moment, this might be interpreted as structure- or density-
independent. If n=1, a strong dependence ofM on the trap energy and
thus on the particular realization of the system is assumed. The par-
ticular form chosen is compatible with the result for an ADWP,
where 〈M2〉 ∼ e−βΔ with Δ denoting the asymmetry. Additionally, it
has been shown in Ref. [40] that weaker dependences give results
equivalent to n = 0.

The linear susceptibility, which is the Fourier transform of Π(t), is
given by

χ1 ωð Þ ¼ β
Z ∞

0
dϵ M ϵð Þ2
D E

peq ϵð Þ κ ϵð Þ
κ ϵð Þ−iω

: ð9Þ

The resulting static susceptibility, i.e. the low-frequency limit, is

Δχ1 ¼ χ1 0ð Þ ¼ β
x−1

x−1þ n
ð10Þ

which diverges at a temperature T = (1− n)T0. Furthermore, the inte-
gral relaxation time

τ nð Þ
eq ¼

Z ∞

0
dtΠ tð Þ ¼ 1

κ∞

x−1
x−2þ n

ð11Þ

diverges at T = (2 − n)T0 which reduces to the well-known result 2T0
for n = 0 [27]. In Fig. 1a), Π(t) is shown for various values of n.

It is obvious that the asymptotic behavior is given by
Π(t) ∼ t−(x − 1 + n). This means that for the model with an expo-
nential DOS the choice of the dynamical variables used here has a strong
impact on the temperature dependent dynamical properties as has
been discussed earlier [40]. In addition, the relaxation time τ that is
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