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It has been recently shown that one can understand the Prigogine–Defay ratio at the glass transition in terms of
freezing into one of the many inherent states of the undercooled liquid. In the present paper, the treatment is
extended to the dynamics at the glass transition to show the connection to isomorphism and density scaling.
In addition, the energy limits for stable inherent states are discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When an undercooled liquid freezes into a glass at the glass temper-
ature Tg, the sample stays in one of the many inherent states between
which it could choose freely in the liquid [1–5]. Obviously, the possibil-
ity to jump from one possible stable structure to another gets lost as the
system freezes into a glass, leaving only the vibrational degrees of
freedom to contribute to dynamics and to thermodynamics.

Though this freezingprocess is in principle continuous, the explosive
increase of the structural relaxation times with decreasing temperature
at the glass temperature concentrates the freezing process into a
relatively small temperature interval [6]. The present paper is focused
on the equilibrium liquid just above this temperature, in particular on
the contributions of the possibility to jump from state to state to its
thermodynamic and dynamic properties.

The concept of an inherent state stems from molecular dynamics
simulations of undercooled liquids [2], where one can remove the
whole kinetic energy at a givenmoment in time and look for the nearest
structural energy minimum of the atomic ensemble. The dynamic and
thermodynamic consequences of the concept have beenmainly studied
in connection with numerical work [3–5], providing deep insights into
the microscopic basis of the glass transition phenomenology. Instead
of a single inherent state, it was found necessary to introduce the
concept of a basin, an ensemble of inherent states with small barriers
between them, in which the system stays a long time before jumping
into the next basin.

Naturally, the concept is even better adapted to the glass transi-
tion in real systems, where the separation between vibrational and
relaxational degrees of freedom is much more pronounced than in

numerical simulations and the basin begins to resemble a single
inherent state. Close to the glass transition, the system can then be
considered to spend a long time vibrating in a single inherent state
before it jumps into another one.

This picture has been recently applied [7] to the Prigogine–Defay
ratio [8], providing an explanation for values larger than one in terms
of the properties of the inherent states. In the present paper, this
treatment is extended to include predictions on the dynamics of the
undercooled liquid. In addition, a consideration on the possible energy
range of the stable inherent states in terms ofmelting and boiling points
is given.

The paper gives a short summary of the theoretical basis and of the
results of the preceding paper [7] in the next section following this
introduction. The extension to dynamics follows in Section 3. Section 4
summarizes and concludes the paper.

2. Properties of inherent states

The inherent state is a structurally stable minimum of the potential
energy for a sample of N particles. N should be large enough to get rid
of finite size effects. A thermodynamic description of the undercooled
liquid in terms of inherent states is reasonable in the temperature
region where the structural relaxation is slow on the picosecond
vibrational time scale, enabling one to distinguish between structural
and vibrational entropy contributions.

An inherent state is characterized by its energyNe and its volumeNv
at the glass temperature Tg and zero pressure, where e is the average
structural energy per particle and v is the average particle volume.
One has to specify temperature and pressure, because the volume of a
given inherent state increases with temperature due to the vibrational
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anharmonicity and decreases with increasing pressure due to its
compressibility.

With these definitions, it is clear that one of these inherent states
has the lowest energy of the whole ensemble. That is the Kauzmann
state. Its free energy must be higher than the one of the crystal;
otherwise the liquid could never crystallize. However, from all the
evidence at our disposal [9], it seems clear that the free energy of
this Kauzmann state is rather close to the crystalline one. The differ-
ence is probably negligible at the temperatures where one is able to
study the undercooled liquid.

The Boltzmann factor for the inherent states contains not only the
energy Ne, but also its vibrational entropy Nsvib as well. One has to
reckon with a vibrational entropy which depends on e. Denoting the
average volume at the structural energy e with ve, it is reasonable to
make a Grüneisen Ansatz for the volume dependence of the vibrational
entropy svib

svib ¼ svib;K þ kBΓe ln
ve
vK

; ð1Þ

where svib,K is the vibrational entropy of the Kauzmann state and vK is its
atomic volume at Tg. As shown in the previous paper [7], Γe can bemuch
larger than the usual [10] Grüneisen Γ, because it reflects the behavior of
the boson peak rather than the one of the entire spectrum.

Here it is assumed that svib depends only on the structural energy e
and not on the volume v. The assumption is necessary to keep the
equations simple. It is supported by the finding that a vacancy in a
crystal does practically not soften the vibrational spectrum [11]. One
could argue that in two inherent states of equal energy, but different
volume, the interatomic potential must be sampled at the same places,
leading to a very similar vibrational spectrum. But it is an assumption
which must not necessarily hold in every system.

The inherent state ensemble is described by its density in structural
energy and volume at Tg and zero pressure. Without loss of generality,
one can split any distribution gev(e, v) into a product

gev e; vð Þ ¼ ge eð Þgv e; v−veð Þ; ð2Þ

with a normalized volume density at constant structural energy
gv(e, v − ve)

Z ∞

0
gv e; v−veð Þdv ¼ 1; ð3Þ

an average volume ve at the structural energy e

Z ∞

0
vgv e; v−veð Þdv ¼ ve; ð4Þ

and a volume fluctuation contribution

Z ∞

0
v−veð Þ2gv e; v−veð Þdv ¼ v2e : ð5Þ

In the thermodynamic limit of large N, ge(e) and gv(e, v − ve) are
N-independent. In order to be able to work with the Boltzmann factor
exp(−βNe) alone, one defines the generalized distribution function

g eð Þ ¼ ge eð Þ ve
vK

� �Γe
: ð6Þ

The average particle volume ve tends to increase with increasing
structural energy e due to the anharmonicity of the interatomic
potential. This effect is responsible for the additional thermal expansion
of the undercooled liquid. One assumes a linear relation

ve ¼ vK þ a e−eKð Þ ð7Þ

where eK is the structural energy of the Kauzmann state and vK
is its volume at the glass temperature Tg. The coefficient a, an
inverse pressure, is a measure for the anharmonicity of the
interatomic potential.

To get the partition function Z, one has to integrate the density
gev(e, v) of the inherent states per atom over the configurational
energy e and over the volume v. At zero pressure, the volume integrates
out and one has

Z ¼
Z ∞

−∞
g eð Þ exp −βNeð Þde; ð8Þ

which contains the vibrational entropy contribution via Eq. (6) for the
generalized distribution function g(e).

One can calculate the average structural energy e per atom and the
average squared structural energy e2 per atom at zero pressure

e ¼ 1
Z

Z ∞

−∞
eg eð Þ exp −βNeð Þde ð9Þ

and

e2 ¼ 1
Z

Z ∞

−∞
e2g eð Þ exp −βNeð Þde: ð10Þ

The configurational partΔcp of the heat capacity at zero pressure per
unit volume is given as

Δcp ¼ 1
v
∂e
∂T ¼ 1

vkT2 e2−e2
� �

: ð11Þ

The average volume v is given by the double integral

v ¼ 1
Z

Z ∞

∞

Z ∞

0
vg eð Þgv exp −βNeð Þdedv: ð12Þ

Because of Eq. (4), one can again integrate the volume out and
gets v ¼ ve, a single integral over e. Inserting Eq. (7) for ve, one gets

v ¼ vK þ a e−eKð Þ: ð13Þ

The same procedure can be followed for the expectation value v2,
this time using Eq. (5) to evaluate the volume integral. Again replacing
ve with Eq. (7), one finds finally

v2−v2 ¼ a2 e2−e2
� �

þ v2e ; ð14Þ

where v2e is the thermal average over the values ve2 at the different
structural energies.

This central result [7] shows that one has two kinds of density
fluctuations in the undercooled liquid. Those in the first term of the
right side of Eq. (14) stem from a change of the structural energy,
those in the second term occur at constant structural energy. Of course,
in a given transition from one inherent state to another onewill usually
find a mixture of both. But there are indeed substances where the
second term is practically zero, which implies a strong correlation
between energy and density fluctuations, the property of isomorphism
which is actively debated in the community [12–14,16,17].

Returning to the additional thermal expansion at Tg, one finds from
Eq. (13)

Δα ¼ a
1
v
∂e
∂T ¼ aΔcp: ð15Þ
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