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In this work we propose a generalized domain approach for modeling the stress relaxation behavior of phase
õseparated borosilicate glasses. The generalization of the domain approach is done by taking two fundamental
steps. First, we assume the boron groups to be the soft boundaries in the borosilicate glasses. Second, we intro-
duce the time-dependent power law into the Kohlrausch function. Using the generalized domain approach, we
explainedwhy the value of the stretched exponent of the stress relaxation in borosilicate glasses anomalously de-
viates from the converged exponent value of 3/5. In addition, we introduce a pre-time, i.e., the time for glass to
reach the structural equilibrium, into the generalized domain approach in order to compensate the variation of
viscosity caused by phase separation. It is found that the pre-time is closely correlated with the time for borosil-
icate glasses to reach structural equilibrium before stress relaxation experiment.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The study of glass relaxation is crucial for understanding the nature
of glass and glass transition [1,2]. As a decay function, the Kohlrausch–
Williams–Watts (KWW) equation [3] is generally accepted to describe
the glass relaxation behavior due to its simplicity. In addition, the
Phillips diffusion-trap model has been attracting attention due to bifur-
cation of the stretching exponent of the KWW equation into two
“magic” values: 3/5 for short-range pathways and 3/7 for long-range
pathways respectively. These two “magic” values were found to corre-
spond to the stretching exponents in both stress and structural relaxa-
tion functions on a series of industrial glasses with ideal microscopic
homogeneity [2]. Moreover, with the improvement of glass homogeni-
zation technology, the measured stretching exponents are gradually
approaching the magic values [4], even for aluminosilicate glasses at
room temperature [5].

Again, the magic values derived from the Phillips model can be
only obtained if wemeasure the relaxation processes of microscop-
ically homogeneous glasses. However, the homogeneity in glasses
is hardly attained due to dynamical and structural heterogeneities,
as well as macroscopic defects such as phase separation, partial
crystallization and poor mixing of the melt [6]. The hyperquenched
glasses exhibit heterogeneous structures, which are indicated by a
broad enthalpy relaxation peak in the calorimetric curve below the
glass transition temperature (Tg) [7]. The hyperquenched glasses
have been widely studied in terms of their complicated enthalpy

relaxation behavior [8,9]. Great effort has been made in describing
the glass relaxation, e.g., by establishing phenomenological models
such as the Tool–Narayanaswamy–Moynihan (TNM) model [10,
11], the thermorheological complexity (TC) model [12], heteroge-
neous TNM model [13], the composite relaxation function (CRF)
[14], the modified stretched exponential (MSE) equation [15] and
the model combining CRF and MSE [16].

For the phase separated glasses, the TC behavior is considered to be
relevant to the changing topological profile [17] during phase separa-
tion. But to our best knowledge, this aspect of phase separated glasses
is not well understood compared to that of hyperquenched glasses, par-
ticularly concerning the stress relaxation behavior. Therefore, in this
work we will closely look into this aspect by taking the well-known
Pyrex glass as an example, which has a tendency to spinodal phase
separation. Simmons et al. measured shear viscosity of two borosilicate
glasses by fiber-elongation technique and determined an independent
region with a radius of 58 Å [18]. Rekhson experimentally derived the
stress relaxation functions of the Pyrex glass in the KWW fashion in
the glass transition region [19]. It was found that the stretching expo-
nent was more temperature-dependent in Pyrex glass than that in
other commercial glasses. However, it should be noted that the specific
mathematic description on the TC behavior is absent in the stress relax-
ation function. Although the existing models are incapable of capturing
the detailed features of the stress relaxation in phase separated glasses,
a systematic work about the viscoelastic phase separation (VEPS) prob-
lem has already been carried out in polymers in order to solve the
dynamic asymmetry of different phases. Tanaka divided VEPS into
type A and type B. In type A only the slow component can support elas-
tic stress while in type B both slow and fast components can support
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stress [20]. Considering that the stretched exponential behavior in het-
erogeneous cross-linked polymers may be caused by a broad size distri-
bution of noninteracting network domains, Gurtovenko et al. derive a
model for type A [21]. Recently, Baeurle and Hotta extended this ap-
proach to study the stress decay of thermoplastic elastomers subjected
to an extensional strain [22].

In this work, we generalize Gurtovenko's approach, i.e., the domain
approach, by adding new theoretical considerations regarding the stress
relaxation in borosilicate glass network. As an assumption of the gener-
alized approach we regard the silica-rich phase as the only component
that can support the applied stress. We introduce a multiplicative
time-dependent power-law representing the changing size distribution
of the domains into the KWW function. The temperature-dependent
stretching exponent β obtained by Rekhson [19] appears to be attribut-
ed to the power law term rather than the pure KWW term. The change
of the power law term with temperature and time is reflected by the
variation of viscosity during phase separation incorporating with the
relaxation time dispersion [23]. In addition, a temporal parameter is in-
volved in this generalized domain approach in order to compensate the
pre-time for the system to attain equilibrium before stress relaxation
measurement.

2. Theoretical model

The domain approach is firstly proposed by Gurtovenko et al. in
order to describe the relaxation dynamics of inhomogeneous cross-
linked polymers [21]. In this section, we outlined three main aspects
to recall its theoretical framework.

2.1. Relaxation inside cross-linked domains

In a typical class of domains, which obeys the power law relaxation
[24], the relaxation time τ(ξ) can be expressed in the following form,
when the domain is further treated as a sufficiently large tree-like net-
work [25],

τ ξð Þ ¼ τ0
n
ξ

� �1=γ
: ð1Þ

Each domain has its maximum relaxation time τmax(n) when ξ=1.
Thus, we can write an exponential decay form of the shear relaxation
modulus G(t, n) in a domain at the time longer than its maximum relax-
ation time τmax(n),

G t;nð Þ ¼ νkT
γ
n

τmax nð Þ
t

� �
exp − t

τmax nð Þ
� �� �

: ð2Þ

Note that in most situations, the power-law term τmax(n) / t in
Eq. (2) is considered as a much weaker factor than the exponential
decay, and it contributes to shear relaxation modulus as a memory
effect when t b τmax(n).

2.2. Size distribution of domains in inhomogeneous cross-linked polymers

In contrast to thewell-known free volumemodel [26], the aggregate
model suggests that the aggregates with different sizes are generated
through the link between molecules or molecular segments [23]. Com-
bining the kinetic equations of reversible aggregations from small to
larger enough ones with a uniform reaction constant and taking the
conservation of mass into account, the size distribution of the aggre-
gates is derived as follows,

f nð Þ ¼ Cnme− Δu=kTð Þn ð3Þ

where C is the normalized constant, k is the Boltzmann constant,m is a
variable influenced by the shape of aggregates andΔu is the aggregation

energy. On condition that the shapes of the aggregates are nearly
isochoric, the value of m is determined to be 2 according to the
entropy-maximum model.

2.3. Relaxation of inhomogeneous cross-linked polymers

A cross-linked polymer is regarded as an ensemble of noninteracting
regionswith finite sizes and certain internal network structure. Suppos-
ing that the cross-linked domains are uniformly embedded in the vis-
cous medium, the different domains can relax independently due to
their soft boundaries. Consequently, the integrated shear relaxation
modulus can be obtained by a superposition of the relaxation modulus
of different domains,

G tð Þ ¼
Z

G0n
me− Δu=kTð Þn γ

n
τmax nð Þ

t

� �
exp − t

τmax nð Þ
� �

dn ð4Þ

where G0 is a general constant during the isothermal process.

3. Application in borosilicate glass

In this section, we attempt to use the domain approach tomodel the
stress relaxation behavior in borosilicate glass. It should be noted that
we face some critical problems in applying this approach to a phase sep-
arated glass system. Thefirst andmost important one is the feasibility of
the model applied in the phase separated glass system. It is considered
that the silica-rich domains (SRDs), which are separated by the boron
groups in the phase separated borosilicate glass, correspond to the
cross-linked domains in Gurtovenko's approach. Taking the large differ-
ence in viscosity between the silica-rich and borate-rich phases into
account, it is reasonable to assume the boron groups as soft boundaries
in borosilicate glass. In addition, some modifications should be made to
the domain approach since the relaxation behavior in borosilicate
glasses is accompanied by the phase separation. In contrast, the original
approach was derived from the case where the phase separation does
not exist [21]. To make the modification, we firstly analyze a possible
changing trend of the SRD size based on a phase separation mechanism
of oxygen vacancymotion. Thenwe give a dynamically quantitative de-
scription of SRD size distribution using the aggregate model. Finally, we
derive a generalized domain approach for modeling the stress relaxa-
tion behavior in borosilicate glasses.

Here, the oxygen vacancymotionmodel is used to analyze the struc-
ture evolution of the borosilicate glass during phase separation [27].
Fig. 1 illustrates the growth of two SRDs during phase separation in bo-
rosilicate glass by combining the oxygen vacancy motion model with
the physical picture of the aggregate model, namely, polymerization of
the SRDs. As shown in Fig. 1(a), domains 1 and 2 are two distinct
SRDs in the structure of borosilicate glass at a certain stage during
phase separation while the boundaries are denoted by the dash curves.
With the diffusion of oxygen vacancies, boron groups are gradually sep-
arated from the domain of the SiO4 tetrahedra as shown in Fig. 1(b). At
the same time, boron–oxygen structural units bind with their adjacent
ones, leading to the formation of larger boron–oxygen units. This has
been partially confirmed by nitrogen adsorption, Raman spectroscopy
and electron microscopy [27,28]. Thus, we can assume that the SiO4

groups have the same growing tendency with the propagation of
phase separation. It is seen in Fig. 1(c) that domains 1 and 2 gradually
connect with other silica-rich networks resulting in the growth of
SRD. Recalling Eq. (3), we regard the term Δu / kT as an only
temperature-dependent function a(T), which presumably plays a
minor role in the propagation of phase separation.Hence, the parameter
m is the only variable in this dynamical progress. Fig. 2 shows the size
distribution curves of SRDs under differentm values. It is seen that the
increase of m is accompanied with an increase of the average SRD size
and a decrease of the size dispersion, and this is indicated by the peak
shift to the longer time and thus narrowing the distribution pattern.
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