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Weconsider a cubeplacedbetween two planar surfaces bounding a three-dimensional Ising slab. This system can
be viewed as the magnetic analog of a colloidal particle immersed in a fluid, which is confined by two parallel
walls. Near the bulk critical point of the Ising ferromagnet the cube gets exposed to thepotential of thefluctuation
that induces the critical Casimir force. Using Monte Carlo simulations we study the dependence of this potential
on the relative boundary conditions at the two surfaces and at the cube within a wide range of temperatures
above and below the bulk critical temperature. In order to calculate the critical Casimir force and its potential,
we adopt an approach based on an integration scheme of free energy differences. The scaling functions of the
corresponding critical Casimir forces are also determined.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Two objects immersed in a fluid which is brought to its bulk critical
point Tc experience the so-called critical Casimir interaction [1]. This
effective interaction arises due to modifications of the structure of the
fluid and due to the restrictions of the fluctuation spectrum of its
order parameter by the surfaces of the objects. Accordingly, not only
the temperature T but also the adsorption properties of both objects
and their geometry determine the sign, the strength and the range of
the critical Casimir forces (CCFs). In asymptotic regimes (T → Tc and
all distances large comparedwithmicroscopic lengths) finite-size scaling
[2] holds and the CCFs are described by universal scaling functions.
Universality permits to use the simplest possible representative of the
same universality class in order to calculate these scaling functions.
In this sense the Ising model represents systems such as simple
one-component fluids or binary liquid mixtures.

The simple geometry of two parallel planes can be realized experi-
mentally by growing a wetting film; exactly the wetting films were
used to provide first reliable evidence for the existence of the CCFs
[3–6]. On the other hand, even for this simple geometry determination
of the scaling functions from corresponding model systems is a
challenging task. Theoretical approaches which incorporate critical
fluctuations beyond the Gaussian approximation and can take into
account a dimensional crossover occurring in films are intractable
for most of the relevant experimentally boundary conditions (BCs).
Monte Carlo (MC) simulations offer a very useful alternative approach,

which is however not free from difficulties. Within this approach the
range of sizes of the system is strongly limited by the steeply increasing
computational costs. For the thicknesses and the aspect ratios of slabs
accessible in simulations, numerical data do not collapse and corrections
to scaling are necessary. Renormalization-group analyses reveal that
there is a whole variety of sources for corrections to scaling which arise
from bulk, surface, and finite-size effects [2]. In addition to the leading
bulk corrections to scaling (with the correction-to-scaling exponent
ω ≃ −0.8) one expects corrections due to the finite aspect ratio,
corrections due to the boundary conditions (which are especially large
for the symmetry breaking boundary conditions) and, moreover, next-
to-leading corrections might occur for narrow films. In spite of these
difficulties the Casimir scaling functions in three spatial dimensions
(3d) have been obtained rather accurately for experimentally relevant
universality classes with a variety of BCs and surface fields [7–14].

In the present paper we study numerically the CCFs acting on a cube
located between two planar walls as a function of temperature and
separation for different BCs. The cube mimics a colloidal particle
positioned near the wall. We use MC simulations of the Ising model
on a cubic lattice as a representative of the Ising universality class
of critical phenomena. The aim of this work is twofold. We would
like to check whether the approach that we used in our previous
studies for a slab geometry [8–11] can be successfully adopted for the
present geometry. This approach is based on the so-called coupling
parameter method where the difference of free energies is expressed
as an integral over the mean energy difference (see, e.g., Refs. [8] and
[15]). Moreover, we address the question of the mechanical stability
of a cube particle for the cases when (a) both walls and the particle
have the same adsorption preference (+| + |+), (b) the walls have
opposite adsorption preferences (+| + |−), and (c) the cube particle is
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neutral and the walls have opposite adsorption preferences (+|0|−).
These situations can bemimicked in our Ising system by choosing an ap-
propriate BC on the lattice sites forming boundaries of the three objects.
Because of unavoidable limitations of the size of the system, we cannot
expect to reach the asymptotic region of the universal behavior in our
simulations. Nevertheless, after rescaling procedure for some BCs we
have obtained a reasonable data collapse.

Recently, a different MC simulation method for spin models which
mimic the sphere–planar plane geometry has been developed [16]. The
geometry of a sphere or a cube near a single planar surface is relevant
for colloidal systems or in experimental setups of high-precision force
measuring devices and methods, such as atomic force microscope
(AFM) [17], surface force apparatus (SFA) [18] or total internal reflection
microscopy (TIRM) [19,20]. For this geometry theoretical predictions for
the CCFs are much more limited than for films. The MC simulation
method employed in Ref. [16] is similar to the one used in [7] for the
plate–plate geometry, where differences of the free energy are computed
by integrating differences of the energy over the inverse temperature.
Simulations have been performed for the improved Blume–Capel model
on the simple cubic lattice, which shares the universality class of the
three-dimensional Ising model but has the advantage over it that the
amplitudes of the leading correction to scaling are substantially

suppressed. The focus of that studywas on symmetry breaking boundary
conditions at the surfaces of the sphere and the plate. The use of the
geometric cluster algorithm and the introduction of an effective radius
of the sphere and the effective distance from the wall have allowed the
author to obtain a good data collapse. Still anotherMC simulationmethod
to compute the critical Casimir force acting between the disk and thewall
in two-dimensional Ising systems has been proposed in Ref. [21]. This
method is analogous to the one used in experiments reported in Refs.
[19,20] for a colloidal particle where the Casimir potential is determined
from the distribution of the position of the particle above the wall. The
interaction between two particles in the presence of the bulk ordering
field recently has been studied by using a local field integration method
[22].

Our presentation is organized as follows. In Section 2 we briefly
present the relevant theoretical background, introduce our model, and
describe the numerical method employed in order to compute the CCFs
and its scaling functions from theMC simulation data. Section 3 contains
our results. We provide a summary and conclusions in Section 4.

2. The model and the method

2.1. Theoretical background

Let us consider a spherical colloidal particle of a diameter a immersed
in critical binary mixture near a wall, see Fig. 1(a).

As already mentioned in the Introduction, at the critical point of
the demixing transition of the binary solvent, the CCFs, which are the
analogs of the electromagnetic Casimir force [23], emerge between
the wall and the colloidal particle as a result of critical fluctuations of
the order parameter of the solvent and the critical adsorption of a pref-
erable component of themixture on the surfaces of wall and the colloid.
For a binarymixture the order parameter is the deviation of the concen-
tration of the one component of themixture from its value at the critical
point. The CCFs between thewall and the particle are obtained from the
free energy UC(β, D, a) of a system consisting of the colloidal particle of
the characteristic linear size a immersed in the fluid at the inverse
temperature β = 1/kBT at the separation D from the planar wall:

f C β;D; að Þ ¼ −∂UC β;D; að Þ
∂D : ð1Þ

Note that the above definition of the CCFs differs from the one used
to define the CCFs between two planar parallel plates immersed in the

(a) (b)

Fig. 1. The geometry under consideration (the cross-section in the xz plane): (a) the
spherical particle of the diameter a at the distance D from the wall; (b) an appropriate
geometry on the lattice for a cubic particle with the edge length a at the separation D from
the bottomwall. The total system size is Lx× Ly× (Lz+2), and the separation of the particle
from the top wall is Lz − D− a, where Lz is the number of layers of free spins.

(a) (b) (c)

Fig. 2. Bond arrangement for the computation of the free energy difference in Eq. (9) (seemain text). The crossover Hamiltonian Hcr (a) describes the systemwhich interpolates between
those described by the Hamiltonians H0 (b) and H1 (c).

377O. Vasilyev, A. Maciołek / Journal of Non-Crystalline Solids 407 (2015) 376–383



Download English Version:

https://daneshyari.com/en/article/7901687

Download Persian Version:

https://daneshyari.com/article/7901687

Daneshyari.com

https://daneshyari.com/en/article/7901687
https://daneshyari.com/article/7901687
https://daneshyari.com

