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a b s t r a c t

This work presents an Artificial Neural Network (ANN) model of non-adiabatic capillary

tubes for isobutane (R600a) as refrigerant. The basis therefore is data obtained by a 1d

homogeneous model which has been validated by own measurements and measurements

from literature. With this method it is possible to account for choked, non-choked, and also

for two-phase inlet conditions, whereas most of the correlations reported in literature are

not capable of predicting mass flow rates for non-choked and two-phase inlet conditions.

The presented models are valid for a broad range of input parameters in respect to do-

mestic applications e the mass flow rates range from 0 to 5 kg h�1, inlet pressure is from

saturation pressure at ambient conditions up to 10 bar, the inlet quality is from 0.5

(capillary) and 0.7 (suction line) to 0 and subcooling (capillary) and superheating (suction

line) from 0 K to 30 K.

ª 2013 Elsevier Ltd and IIR. All rights reserved.

Prévisions de la performance de l’écoulement d’isobutane
dans un tube capillaire non-adiabatique utilisant un réseau
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1. Introduction

Modelling of refrigeration units such as household re-

frigerators, chillers or freezers becomes increasingly popular

for development purposes over the course of years since the

advantage of greater flexibility, better control of boundary

conditions and less experimental effort seems to be inviting.

This applies not only for cycle simulations but also for

modelling strategies of the single components like heat

exchanger, compressor and expansion device. This work
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focuses on the last mentioned, in particular a capillary tube.

This device is commonly used due to its simplicity and low

price. It also allows equalisation of systempressure during off-

cycles of refrigeration systems and thus lowering the

compressor starting torque (Peixoto and Bullard, 1994). The

numerical treatment, though, may be more complex than at

first glance, various effects like flash boiling, choking, friction,

heat transfer or delay in evaporation contribute to a highly

nonlinear behaviour as far as the connection between pres-

sure, temperature, mass flow rate and vapour quality is con-

cerned. But not only thenumerical side, even the experimental

approach is hindered since inmost cases only the inlet and the

outlet conditions can be measured appropriately in terms of

pressure, temperature and mass flow. Phenomena inside the

small diameter tube, which usually ranges between 1 and 5 m

in length and 0.5 up to 2 mm in inner diameter (Bansal and

Rupasinghe, 1996; Fang, 1999) can hardly be visualized nor

can a vapour quality satisfactorily be measured.

In the course of numerical mapping of capillary tubes

different approaches depending on its later assignment have

been realized. Reviews about capillary tubes can be found in

Ding (2007), Fang (1999), and Khan et al. (2009). Nearly all of the

models which focus on one-dimensional grids, apply empir-

ical correlations for friction or viscosity and are solved for the

mass flow rate and if non-adiabatic behaviour is assumed,

also for the outlet temperature of the cold side. 0d models are

presented by Hermes et al. (2010) and Zhang and Ding (2004)

which explicitly calculate the mass flow rate. The accuracy

lies around �15% for more than 90% of the data points. 1d

models on the other hand side solve a set of equations for

every cell along the flow direction and a mass flow rate is

usually found iteratively. The homogeneous flow model is

widely used, e.g. Bansal and Wang (2004), Vins and Vacek

(2009) or Zhou and Zhang (2006). Concerning its accuracy it

is difficult to state numeric values since many different de-

scriptions of the quality of a model exist, and also the setup

and the simulation parameters differ (adiabatic, non-

adiabatic, helical geometry, choked, non-choked, .). Never-

theless a rough estimate can be given by �5% average devia-

tion (Zhou and Zhang, 2006), 5% relative mean error (Seixlack

and Barbazelli, 2009) or an agreement between experimental

data and calculated data within�7% (Bansal andWang, 2004).

Other numeric schemes like slipmodels, two fluidmodels and

drift flux models are the most sophisticated ones, taking the

relative motion of vapour and liquid phase into account.

Drawbacks of such models are firstly the time it takes one

to implement the equations and adjust the program and

finally validate the results and secondly the long computa-

tional time compared to explicit equations without iteration

loops. Popular methods of circumventing that issue are

dimensionless correlations (Choi et al., 2004a, 2004b; Vins and

Vacek, 2009) or Neural Networks (Islamoglu et al., 2005; Vins

and Vacek, 2009; Zhang, 2005; Zhang and Zhao, 2007). Both

of these methods require a set of training data to fit its con-

stants and weights accordingly. This training set usually is

taken from measurements. However, the fact that extrapola-

tion beyond the corner points of these measurements usually

leads to highly erroneous results, restricts the range of validity

to the range of before-mentioned experiments. To avoid such

restrictions, the training data can also be provided by simu-

lation which may not be as accurate as properly designed

measurements but bears definitely the advantage of extend-

ing the range of input parameters to any desirable values. This

method is used in the following to feed a Multilayer Neural

Network with data which has been evaluated by a 1d homo-

geneous capillary tube model. Reasons therefore are those

mentioned earlier, the 1d code is too slow for cycle simula-

tions in refrigeration systems and usual correlations are only

valid for choked conditions for a rather small range of pa-

rameters, both thermodynamically and geometric. In the

following it is described how the 1d model is setup, how

training data for ANN is acquired and how the network per-

forms when off- design boundary conditions occur.

2. Capillary tube model and validation

The homogeneous flow assumption is used to describe the

two phase flow, where the equations of continuity, mo-

mentum and energy are solved for the capillary tube and the

equation of continuity and energy are taken into account for

the suction line in the common heat exchanger. The solution

method for this counter-flow heat exchanger is cell-wise

iteration starting from an initial guess of a mass flow rate.

Nomenclature

a neural network variable

b neural network bias

d total number of cells

D inner diameter [m]

h enthalpy [J kg�1]

i cell index

IW weight matrix

L capillary length [m]

LW weight matrix
_m mass flow rate [kg s�1]

n neural network input

p pressure [Pa]

t neural network output

T temperature [�C]

z cell length

Superscripts

e normalized value

Subscripts

in inlet

out outlet

pre before heat exchanger

HTX heat exchanger

CAP capillary

Greek letters

a grid parameter

b grid parameter

D increment
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