FI SEVIER Contents lists available at ScienceDirect ## Journal of Non-Crystalline Solids journal homepage: www.elsevier.com/locate/jnoncrysol # Long-term natural physical aging in glassy Ge₅Se₉₅ as probed by combined NMR and PAL spectroscopy O. Shpotyuk ^{a,b,*}, B. Bureau ^c, V. Boyko ^a, A. Ingram ^d, R. Golovchak ^e, C. Roiland ^c - ^a Scientific Research Company "Carat", Stryjska str. 202, Lviv 79031, Ukraine - b Institute of Physics, Jan Dlugosz University of Czestochowa, al. Armii Krajowej 13/15, Czestochowa 42200, Poland - ^c Equipe Verres et et Céramiques, UMR-CNRS 6226, Inst. des Sciences chimiques de Rennes, Université de Rennes 1, 35042 Rennes CEDEX, France - ^d Faculty of Physics, Opole University of Technology, 75, Ozimska str., Opole 45370, Poland - ^e Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN 37044, USA #### ARTICLE INFO #### Article history: Received 28 January 2014 Received in revised form 18 March 2014 Accepted 24 March 2014 Available online xxxx Keywords: Chalcogenide glasses; Nuclear magnetic resonance; Positron annihilation; Physical aging #### ABSTRACT Structural rearrangements associated with long-term natural physical aging in glassy Ge_5Se_{95} are studied using combined methods of solid state ⁷⁷Se nuclear magnetic resonance and positron annihilation lifetime spectroscopy. *Ab initio* quantum chemical calculations with RHF/6-311G* basis set was performed to justify the character of the observed destruction–polymerization transformations possible during long-term natural storage of Ge_5Se_{95} glass. It is shown that some amount of directly corner-shared $GeSe_{4/2}$ tetrahedrons present in as-prepared glasses slowly transform under prolonged physical aging in a more uniform glassy network composed by nearly-equal Se chains between neighboring $GeSe_{4/2}$ tetrahedrons. These transformations are accompanied by atomic shrinkage with character fragmentation of free-volume voids typical for chalcogen-rich glasses. The observed effect in Ge_5Se_{95} glass is compared with similar changes in long-term aged As–Se glasses having short ($As_{30}Se_{70}$) and long ($As_{10}Se_{90}$) selenium chains. $\hbox{@ 2014 Elsevier B.V. All rights reserved.}$ #### 1. Introduction Physical aging (PhA) occurring as a result of structural relaxation below the glass transition temperature T_g (referred also as below- T_g structural relaxation) is a permanent feature of different network glass-formers, including oxide and chalcogenide glasses (ChG) [1-4]. In particular, strong PhA effect caused by prolonged storage in natural conditions (natural PhA) and under different external influences (thermal heating, high-energy irradiation, absorbed light photoexposure) was detected in Se-based ChG of binary As-Se [5-7], Ge-Se [8-10] and ternary Ge-As-Se [11] systems. The nature of this effect is associated with the Johari–Goldstein β -relaxation [2] involving two stages of structural perturbations [12,13]. The first stage relies on the elementary relaxation events (twisting) of inner Se atoms within double-well potentials associated with high flexibility of chalcogen bonds (presumably viewed as cis-trans reconformations) [12–14], which serve as precursors for spontaneous densification (alignment) of local Se-rich regions. This initial process leads to a partitioning of the system into loosely and more densely packed regions (confirmed recently by simultaneous positron annihilation lifetime (PAL) spectroscopy and differential scanning calorimetry (DSC) measurements [15]), which then collapse decreasing density fluctuations. In the second stage, the above relaxation processes are assumed to happen at a larger scale in sequence and/or parallel way, leading to an overall shrinkage of the glass backbone, which can be attributed to the Johari–Goldstein β -relaxation facilitating α -relaxation events [13]. During overall shrinkage, the bond-changing structural rearrangements are also possible in ChG as a minor process. Thus, it is shown recently for glassy g-As₃₀Se₇₀ that some of the two neighboring =As-Se-Se-As= bridge-like structural units switch into short =As-Se-As= and long =As-Se-Se-As= fragments as a result of long-term natural PhA [16]. This possibility is confirmed by our modeling within cation-interlinked network cluster approach (CINCA), showing energetic preference for directly corner-shared AsSe_{3/2} pyramids in the structure of binary As-Se glasses with short chalcogen (Se) chains (like g-As₃₀Se₇₀) [16]. Therefore, long-term natural PhA in these glasses can be accompanied by changes in bonds statistics, deviating from predictions of the uniform "chains crossing" model [17]. In case of longer Se chains interconnecting rigid cation-centered structural units, however, it was established previously at the example of $g-As_{10}Se_{90}$ that chemical bond distribution is almost held during structural transformations associated with long-term PhA [12]. The natural question then arises: does it hold for all the Se-rich ChG, or maybe there are some peculiarities due to the nature of cation-centered structural units? ^{*} Corresponding author at: Scientific Research Company "Carat", Stryjska str. 202, Lviv 79031, Ukraine. Tel.: +380 322 63 83 03; fax: +380 322 63 22 28. E-mail address: shpotyuk@novas.lviv.ua (O. Shpotyuk). To answer this question, we have studied chemical ordering and atomic-deficient (void) structure of Ge_5Se_{95} glass, which is characterized by an average coordination number of 2.1 (similar to g- $As_{10}Se_{90}$) subjected to long-term natural PhA for more than two decades. The results are compared to ones obtained for rejuvenated samples of the same composition, which is assumed to be in a state close to the as-prepared virgin glass. #### 2. Experimental Glassy g-Ge $_5$ Se $_95$ samples were prepared by conventional meltquenching route more than two decades ago (in 1990) [18]. The mixture of high-purity precursors (not worse than three nines) was melted in an evacuated quartz ampoule at 973 K for 5 h in a rocking furnace. Then, the ingots were air-quenched from 900 K to achieve a glassy state. After synthesis, each of the samples was stored in a dark place at controlled room temperature before the present measurements were carried out. The amorphous state of the samples was inferred from data of differential scanning calorimetry and X-ray diffractometry. Before the experiments, part of the aged samples was rejuvenated in order to achieve the structural state close to the initial as-prepared one [4,10]. This procedure implied heating of the samples above their glass transition temperatures (T_g), waiting equilibrium at ($T_g + 30$) K and subsequent cooling in the chosen regime at the same cooling rate (q = 5 K/min). The 77 Se (I=1/2) nuclear magnetic resonance (NMR) measurements were carried out at room temperature on Avance 300 Bruker spectrometer operating at 57.3 MHz with a 2.5 mm Magic Angle Spinning probe rotating at 22 kHz. Due to the breadth of the NMR lines for glasses, a Hahn spin echo sequence was applied to refocus the whole magnetization. The Fourier transforms were performed on the whole echoes to increase the signal-to-noise ratio and to directly obtain some absorption mode line shapes. Because of slow longitudinal relaxation, the recycle time was equal to 300 s and numbers of scans were about 1000 meaning around 3 days for each measurement. The experimental spectra were simulated with Dm2000nt version of the Winfit software [19]. The PAL spectra were recorded with fast–fast coincidence system (ORTEC) of 230 ps resolution (FWHM of a single Gaussian, determined by measuring ⁶⁰Co isotope) at the room temperature and relative humidity RH = 35%, provided by special climatic installation. Two identical aged or rejuvenated g-Ge₅Se₉₅ samples were used to arrange a sandwich structure needed for PAL measurements. Statistical averaging was performed for three independent PAL probes assembled with samples of the same thermal prehistory. Each spectrum was measured with a channel width of 6.15 ps (covering 8000 channels) and contained ~ 10⁶ coincidences in a total, which can be considered as a necessary precondition for normal measurement statistics. Isotope ²²Na of ~50 kBq activity was used as a source of positrons (prepared from aqueous solution of 22 NaCl, wrapped by Kapton® foil of 12 μm thickness and sealed), which was sandwiched between two identical glassy samples. The source correction due to special calibration tests performed with Ni and Kapton® foil was applied to all raw PAL spectra in order to compensate an additional input originating from annihilation in source itself and covering Kapton® foil. The registered PAL spectra of the investigated g-Ge₅Se₉₅ were processed with standard LT 9.0 computer program [20]. The variance of *FIT* determined as statistically weighted least-squares deviation between experimental points and theoretical curve reconstructed for two independent components (with τ_1, τ_2 positron lifetimes and I_1, I_2 intensities) was taken into account to select the best result. The obtained fitting parameters agreed well with each other within an experimental errorbar of \pm 0.005 ns in positron lifetimes and \pm 0.01 in the corresponding intensities. The average positron lifetime τ_{av} was determined as a center of mass of whole lifetime spectrum in respect to known expression: $$\tau_{av} = \sum_{i} I_i \tau_i, \tag{1}$$ where τ_i and I_i denote lifetime and intensity of the corresponding components, respectively. Then, the positron trapping modes in g-Ge₅Se₉₅, *e.g.* the positron lifetime in "defect-free" bulk τ_b , and positron trapping rate in "defects" κ_d , were calculated using a formalism of two-state positron trapping model ($I_1 + I_2 = 1$) [21–25]: $$\tau_b = \frac{I_1 + I_2}{\frac{I_1}{\tau_1} + \frac{I_2}{\tau_2}},\tag{2}$$ $$\kappa_d = \frac{I_2}{I_1} \left(\frac{1}{\tau_h} - \frac{1}{\tau_2} \right). \tag{3}$$ To perform cluster modeling for different network-forming atomic configurations proper to g-Ge₅Se₉₅ and confirm, in such a way, the possible structural transformations during prolonged PhA, the PC-aided simulation procedure known as CINCA (cation-interlinking network cluster approach) [26] was utilized. The *ab-initio* quantum chemical modeling was performed using HyperChem Release 7.5 program package based on restricted Hartree–Fock (RHF) self-consistent field method using split-valence double-zeta basis set with single polarization function 6-311G* [27,28]. The final geometrical optimization and single-point energy calculations for selected molecular precursors of network-forming clusters were performed employing the Fletcher–Reeves conjugate gradient method until the root-mean-square gradient of 0.1 kcal/(Å·mol) was reached. The obtained energy of clusters were corrected on H atoms according to the procedure well developed elsewhere [29–31]. #### 3. Results and discussion In respect to NMR spectra shown in Fig. 1a, the aged g-Ge₅Se₉₅ demonstrate nearly ideal "chain-crossing" model [17]: 80% of Se atoms occupy positions between two other Se atoms (– Se – Se – Se – chains or rings) and 20% of Se atoms occupy positions between Se and Ge atoms (-Se-Se-Ge = fragments). The corresponding NMR spectra on Fig. 1a can be well reconstructed with two Gaussian peaks located at ~850 \pm 10 ppm (peak A of nearly 200 ppm width, which corresponds to Se-Se-Se environment) and ~580 \pm 10 ppm (peak B of nearly 250 ppm width, which corresponds to preferential Se – Se – Ge environment) with 80:20 ratio (the peak intensities was determined with an error of nearly $\pm 3\%$) [32–35]. As shown in [35], the origin of B line can also be attributed to additional input from edge-sharing Ge – Se – Ge environment. But edge-sharing tetrahedrons were not confirmed in this sample with high-resolution XPS [18] and the existence of such a high percentage (20%) of direct edge-sharing bridges between tetrahedrons is not consistent with initial glass composition, so it seems more plausible attribution this line to preferential Se-**Se**-Ge environment. The above 80:20 distribution between -Se-Se-Se- and -Se-Se-Ge= structural fragments in the aged $g-Ge_5Se_{95}$ is disturbed after rejuvenation, as it testified from NMR results depicted in Fig. 1b for non-aged samples. The reconstructed NMR spectrum of this rejuvenated $g-Ge_5Se_{95}$ shows clear broadening at the low chemical shift and additional peak C of ~300 ppm width has to be introduced at ~380 \pm 10 ppm to achieve an acceptable goodness of fit. This new contribution can be decidedly attributed to bridging $\equiv Ge-Se-Ge\equiv$ environment [32–35]. The observed changes are relatively weak, involving ~7% of ### Download English Version: # https://daneshyari.com/en/article/7902181 Download Persian Version: https://daneshyari.com/article/7902181 <u>Daneshyari.com</u>