

Modeling of a semi-hermetic CO₂ reciprocating compressor including lubrication submodels for piston rings and bearings

Bin Yang^a, Craig R. Bradshaw^b, Eckhard A. Groll^{b,*}

^a School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China ^b Ray W. Herrick Laboratories, Purdue University, 140 S. Martin Jischke Drive, West Lafayette, IN 47907, USA

ARTICLE INFO

Article history: Received 2 November 2011 Received in revised form 16 October 2012 Accepted 19 October 2012 Available online 29 October 2012

Keywords: Reciprocating compressor Model CO₂ Optimization Friction

ABSTRACT

A comprehensive model for a semi-hermetic CO_2 reciprocating compressor is presented. This comprehensive model is composed of three main sub-models simulating the geometry and kinematics, the compression process, and frictional power loss. Valve and leakage sub-models are included in the compression process model. The frictional power loss model includes the friction at the bearings and between the piston ring and cylinder wall. The predicted results of the comprehensive model are validated using external compressor performance measurements of compressor input power and mass flow rate. The mass flow rate and compressor input power are predicted to within 4.03% and 6.43% mean absolute error, respectively, compared to the experimental datum. Additionally, a parametric study is presented which investigates compressor performance as a function of the stroke-to-bore ratio.

© 2012 Elsevier Ltd and IIR. All rights reserved.

Modélisation d'un compresseur à piston semi-hermétique au CO2, y compris des sous-modèles pour la lubrification des segments de piston et des paliers

Mots clés : Compresseur à piston ; Modèle ; CO2 ; Optimisation ; Frottement

1. Introduction

Since the rediscovery of carbon dioxide (CO_2 or R744) as a suitable refrigerant by Lorentzen and Pettersen (1992), many studies have been conducted on CO_2 compressors and systems. The operating temperatures of typical refrigeration or air-conditioning systems dictate that a cycle using CO_2 as a working fluid would need to operate as a trans-critical cycle. In these systems, the CO_2 reciprocating compressor runs with a relatively high operating

* Corresponding author. Tel.: +1 765 496 2201.

E-mail address: groll@purdue.edu (E.A. Groll).

^{0140-7007/\$ –} see front matter © 2012 Elsevier Ltd and IIR. All rights reserved. http://dx.doi.org/10.1016/j.ijrefrig.2012.10.017

Nomeno	clature	μ	dynamic viscosity [Pa S] or friction coefficient [–]
А	area [m ²]	$v_{1,oil}, v_{2,o}$	$_{ m sil}$ kinematic viscosity at 37.8 °C and 93.3 °C
C	discharge coefficient [_]		respectively [cS]
	integration constant [_]	ν_1, ν_2	Poisson's ratio [—]
С ₁ , С ₂	diameter [m]	v_{r1}	the surface roughness variance ratio [–]
	Vound's modulus for ring and guinder well (Cool	ρ	density [kg m ⁻³]
E ₁ , E ₂	found s modulus for ring and cylinder wall [Gpa]	σ	composite surface roughness
F	iorce [N]	σ_1, σ_2	surface roughness for ring and cylinder liner
G	gravity [N]	τ	thermal conductivity of refrigerant in control
Р	power [W]		volume $[W m^{-1}K^{-1}]$
H_{pc}	instant frictional loss between the top piston ring	ϕ_{f}, ϕ_{fc}	shear stress factors, dimensionless
	and cylinder wall [W]	φ _x , φ _c	Pressure flow factor and shear flow factor
L	axial length of the bearing [m]	τ A) τ S	angular speed of the crankshaft (rad s^{-1})
Nj	rotational speed of the journal [rps]		angalar speca of the cramonale frag of j
Ν	the number of asperities per unit contact area	Subscript	S
Q	quantity of heat transferred to control volume	0	clearance volume
	through boundary from its ambient [J]	А	asperity
R	gas constant of carbon dioxide [J $kg^{-1} K^{-1}$], or	b	ring back
	radius [m]	bearing	crankshaft bearing and crank journal bearing
S	piston stroke [m]	bush	bearing bush
Т	temperature [K]	с	refrigerant in control volume
U	velocity [m s ⁻¹]	case	compressor case
V	volume [m ³]	cir	circumferential
W	work [J], power [W] or force [N]	contact	asperity contact
W*	Dimensionless load capacity [-]	CS	crankshaft
Z	compact factor of carbon dioxide [-]	cvl	cylinder
_ a	niston acceleration $[m s^{-2}]$	d	downstream
h	niston ring thickness [m]	die	discharge
	clearance [m]	f	friction
	c c crankshaft dimensions [m]	I GOD	niston ring con
L_1, L_2, L_3, L_4	L_4, L_5 Clarkshart differences [11]	gap	piston mig gap
n h	unit entitalpy j kg j of on min thickness [m]	gas	gas in the un-indicated region of piston mig
n _{valve}		п 1.1.1.	
m	mass [kg]	nign	nigh pressure side
m	mass flow rate of refrigerant of the compressor	ind	actual indicated power
	[kg s ⁻¹]	input	compressor input
n	compressor rotational speed [rpm]	journal	crankshaft journal
р	pressure [Pa]	1	connecting rod
p_1, p_2	inlet and outlet pressure of piston ring lubrication	li, lo	leak in and out
	region [Pa]	loc	local
и	unit internal energy [J kg ⁻¹]	low	low pressure side
υ	specific volume [m³ kg ⁻¹]	М	electric motor
х	piston displacement [m]	mean	mean velocity of piston
x _C	cavitation point [m]	oil	lubricating oil
Crach lat	toro	р	piston
GIEEK LEL	Polotico algoran es volume []	radius	radius
α	Relative clearance volume [–]	ring	piston ring
β	angle between the axis of connecting rod and	shaft	crankshaft
o'	center line of cylinder [rad]	suc	suction
β	asperity radius of curvature	sup	oil supply
η	efficiency	т	ring tension
θ	crank angle [rad]	t	total
К	specific heat ratio [–]	u	upstream
λ	ratio of crank radius to the length of the	valve	valve
	connecting rod	, and	

pressure compared to other reciprocating compressors using conventional refrigerants, which presents practical challenges. Thus, the unique operating cycle and practical challenges for CO_2 compressors necessitate the need for careful

modeling of a CO_2 reciprocating compressor as presented in this work.

Many steady-state simulation models for reciprocating compressors are presented in the literature. Navarro et al. (2007)

Download English Version:

https://daneshyari.com/en/article/790267

Download Persian Version:

https://daneshyari.com/article/790267

Daneshyari.com