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a  b  s  t  r  a  c  t

A  problem  of  the dynamic  process  of their  deformation  is  formulated  in  the momentless  approximation
for  thin  shells  made  of  rubber-like  elastomers  under  the  action  of  a time-varying  excess  hydrostatic
pressure.  A system  of non-linear  equations  of motion  is set  up  for the  case  of arbitrary  displacements  and
deformations  in  which  the  true  deformation  of  the  transverse  compression  of  the  shell,  corresponding  to
the  use  of  the modified  Kirchhoff–Love  model  proposed  earlier,  and  the  coordinates  of  the  points  of the
middle  surface  with  respect  to  a fixed  Cartesian  system  of coordinates,  are  taken  as  the required  unknown
functions.  Physical  relations  connecting  the  components  of  the true  internal  stresses  with  the elongation
factors  and the extent  of the shear strain  are  constructed  using  relations  proposed  earlier  by  Chernykh.
A  finite-difference  method  is  developed  for solving  the  initial-boundary  value  problem  and,  on  the  basis
of this,  the  dynamic  process  of  the  inflation  of shells  of revolution  at different  rates  of  pressure  increase
is  investigated  and  the  unstable  stages  of  their  deformation  are  established  with  a  determination  of the
corresponding  limiting  (critical)  pressure  value.  After this  value  has  been  reached,  a  further  increase  in
the deformations  occurs  at decreasing  values  of  the  internal  pressure.

© 2014  Published  by  Elsevier  Ltd.

Products that are thin-walled shells made of highly elastic materials (a synthetic elastomer, latex film or natural rubber) and subjected
to considerable deformations (a relative elongation of up to 1000%) during use are widely and diversely applied: catheters used in medicine,
car air bags, air balloons, etc. As a rule, calculations of the strength of such constructional components must be based on the use of the
relations of the non-linear mechanics of deformable solids and thin shells for finite displacements and deformations. There is an extensive
literature 1–12 dealing with the construction of one version or another of these relations. Examples of their application in solving certain
problems in the mechanics of elastomers have been presented, in particular, in a monograph.3 The physical relations constructed in it,
relating the components of the true stresses to the components of the true strains in the form of elongation factors have been used 11

to formulate and solve problem of the inflation and static stability of a cylindrical shell with closed ends made of rubber and under the
action of an internal pressure. A characteristic feature of this problem is the separation of the process of loading the shell into two stages:
in the first stage, an increase in the diameter and length of the shell only occurs when the pressure increases and, in the second stage, a
further increase in the above dimensions of the shell and a decrease in its thickness occurs by pumping air into the shell with decreasing
pressure. The mechanical explanation of this process involves the onset of the static instability of the rubber shell under conditions of
biaxial asymmetric stretching, similar to the formation of a neck in cylindrical samples made of elastoplastic materials when they are
stretched 10 in an axial direction under a static load.

The purpose of this paper is to study the loading of thin elastomer shells with an internal pressure described above within the limits
of a dynamic formulation of the problem, that extends the results of the investigations carried out earlier.4,7,10,11 It follows, starting out
from an analysis of the results obtained earlier,11 that taking account of the deformation of the compression of the shell in the transverse
direction, the finiteness of the components of the true deformations, the introduction of the true stresses according to Novoshilov 1 and
the use of constitutive relations linking the true stresses and true strains with one another is of fundamental importance in its formulation.
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1. The equations of motion of a momentless shell

We  assume that, at the instant t = t0, the space V0 of the undeformed shell is referred to a system of curvilinear coordinates �1, �2, z
which is normally associated with the middle surface �0 that has the principal basis vectors r0

i
= ∂r0/∂�i and components of the principal

metric tensor G0
ij

= r0
j
r0

j
. In the system of coordinates adopted, the radius vector of an arbitrary point M0 ∈ V0 is defined by the equality

(henceforth Latin indices have the values 1,2 and Greek indices have the values 1, 2, 3)

(1.1)

where r0 = r0(�i) is the radius vector of a point on the surface �0, h is the initial thickness of the shell, and e0
3 is the vector of the unit normal

to the surface �0 that constitute a right handed trihedron with the unit vectors e0
i

= r0
i
/
√

G0
ii
.

When the shell is dynamically deformed, we shall define the radius vector of the above-mentioned point M0 ∈ V0, that has passed at the
instant t to the point M(�i, z) ∈ V, according to the modified Kirchhoff–Love theory,11 by the representation

(1.2)

where u = u�e0
� is the vector of the displacements of the points of the middle surface �0, ϕ(�i) is a transverse deformation function that

is introduced into the treatment in terms of which the elongation factor �3 and the true strain �3 in the transverse direction z are defined
using the formulae 11

(1.3)

and e� are unit vectors in the deformed surface � with a radius vector r, to determine which we have the formulae

(1.4)

Note that the vectors e1 and e2 are directed along the tangents to the coordinate lines �i in the deformed state and e3 is directed along
the normal to the surface �. The covariant components of the strain tensor

(1.5)

that serve for the calculating of the elongation factors �1 and �2 in the direction of the unit vectors e1 and e2 and the shear measure
sin �12

9,11 in accordance with the expressions (�12 is the angle between the basis vectors r0
1 and r0

2 in the undeformed state)

(1.6)

where �i is the relative elongation and �(ij) is the dimensionless value of the covariant components of the strain tensor, are determined by
the difference between the components of the metric tensors Gij and G0

ij
.

Assuming that it is a thin momentless shell, in the sections �i = const and z = const of the deformed shell which, at the instant t, has a
thickness 11

we introduce the vectors of the true stress �i and �3 into the treatment, defining them by the representations

(1.7)

in which the quantities �ij and �33 are physical components.
Integrating expression (1.7) over the thickness of the shell h*, we obtain

(1.8)

where

(1.9)

We will now assume that surface forces p− and p+, applied to points of the faces z = − h*/2 and z = h*/2, as well as a mass force Q act on
an infinitesimal element of thickness h* separated from the shell and on the surface �, that is, an infinitesimal area d� =

√
Gd�1d�2. We

will assume that they are defined in the form

(1.10)

where p = p− + p+ is the excess pressure acting on the shell divided by the unit of area d�, � is the density of the shell material that we  shall
subsequently consider as invariable when treating shells made of an incompressible elastomer, and g is the gravitational acceleration.

In the approximation of momentless theory, the transverse internal stress formed in the shell T33 and the projection of the principal
moment of the external forces in the direction of the normal e3 that, in the case considered, is equal to



Download English Version:

https://daneshyari.com/en/article/790328

Download Persian Version:

https://daneshyari.com/article/790328

Daneshyari.com

https://daneshyari.com/en/article/790328
https://daneshyari.com/article/790328
https://daneshyari.com

