Accepted Manuscript

Photovoltaic device performance of electron beam evaporated Glass/TCO/CdS/CdTe/Au heterostructure solar cell

K. Punitha, R. Sivakumar, C. Sanjeeviraja

PII: S2468-2179(17)30138-7

DOI: 10.1016/j.jsamd.2017.12.001

Reference: JSAMD 135

To appear in: Journal of Science: Advanced Materials and Devices

Received Date: 7 August 2017

Revised Date: 21 November 2017 Accepted Date: 6 December 2017

Please cite this article as: K. Punitha, R. Sivakumar, C. Sanjeeviraja, Photovoltaic device performance of electron beam evaporated Glass/TCO/CdS/CdTe/Au heterostructure solar cell, *Journal of Science: Advanced Materials and Devices* (2018), doi: 10.1016/j.jsamd.2017.12.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Photovoltaic device performance electron evaporated of beam

Glass/TCO/CdS/CdTe/Au heterostructure solar cell

K. Punitha¹, R. Sivakumar^{1,a)}, C. Sanjeeviraja²

¹Department of Physics, Alagappa University, Karaikudi - 630 003, India

²Department of Physics, Alagappa Chettiar College of Engineering and Technology,

Karaikudi - 630 003, India

Abstract

In this work, we report on substrate temperature and Cu addition induced changes in

photovoltaic device performance of Glass/TCO/CdS/CdTe/Au heterostructure prepared by

electron beam evaporation technique. Prior to the photovoltaic study the structural and optical

properties of CdTe, CdTe:Cu and CdS/CdTe, CdS/CdTe:Cu layers were studied. X-ray

diffraction (XRD) study showed the deposited films belong to zinc blende structure. The

existence of Te peak in the XRD pattern revealed the presence of excess Te in the deposited film

structures, which confirmed the p-type conductive nature of the films. This was further

substantiated by the electrical study. The low resistivity of $1\times10^3~\Omega$ cm was obtained for 4 wt.%

of Cu doped CdTe film, which may be due to the substitutional incorporation of more efficient

Cu²⁺ (Cd²⁺) in the CdTe lattice. The decrease in band gap with increasing Cu content may be

attributed to the existence of shallow acceptor level formed by the incorporation of Cu dopant

into the CdTe lattice. The efficiency of cell is increased with increasing Cu concentration and the

cell prepared at room temperature with 4 wt.% of Cu addition possesses the maximum

conversion efficiency of 1.68%. Further, the photo response of the device is good as the V_{oc} and

 I_{sc} is increased with increase in input power.

Key words: CdTe, grain boundary effect, optical tailoring, recombination losses, ideality factor,

parasitic resistances, conversion efficiency.

a) Author for correspondence: Tel: +91-4565-223303

Fax: +91-4565-225202

E-mail: krsivakumar1979@yahoo.com

1

Download English Version:

https://daneshyari.com/en/article/7904278

Download Persian Version:

https://daneshyari.com/article/7904278

<u>Daneshyari.com</u>