Accepted Manuscript

Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications

P.K. Jisha, S.C. Prashantha, H. Nagabhushana

PII: S2468-2179(17)30064-3

DOI: 10.1016/j.jsamd.2017.10.001

Reference: JSAMD 125

To appear in: Journal of Science: Advanced Materials and Devices

Received Date: 10 May 2017

Revised Date: 16 September 2017

Accepted Date: 5 October 2017

Please cite this article as: P.K. Jisha, S.C. Prashantha, H. Nagabhushana, Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications, *Journal of Science: Advanced Materials and Devices* (2017), doi: 10.1016/j.jsamd.2017.10.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications

P.K. Jisha^{1,2}, S.C. Prashantha^{2,3*}, H. Nagabhushana⁴

¹Department of Physics, New Horizon College of Engineering, Bangalore-560103, India ²Research and Development Center, Bharathiar University, Coimbatore-641046, India ³Research Center, Department of Science, East West Institute of Technology, VTU, Bengaluru-560091, India ⁴Prof. CNR Rao Center for Advanced materials, Tumkur University, Tumkur-572103, India

Abstract

A novel green light emitting $GdAlO_3$: Tb^{3+} (1- 11 mol %) nanophosphor has been synthesized by the solution combustion method and the final products characterized. The energy band gap of the samples were estimated in the range of 5.13 - 5.88 eV from diffuse reflectance spectra. The effect of the added Tb^{3+} ions on the electronic structure was estimated based on the absolute electronegativity. The characteristic photoluminescence emission corresponding to ${}^5D_4 \rightarrow {}^7F_j$ (j=6, 5, 4, 3) of the Tb^{3+} ions was observed in the wavelength range of 500-650 nm, due to the f-f transitions upon the 378 nm excitation. The optimized nanophosphor was found suitable for in the latent fingerprint detection. The photometric characterization has revealed the excellent color chromaticity coordinates and the correlated color temperature values. They are on the same level of commercial phosphors and quite useful for green WLEDs, solid state displays and forensic applications as well.

Keywords: Combustion; Nanophosphor; Diffused Reflectance; Photoluminescence; Latent fingerprint;

^{*} Corresponding author. @ Research Center, Department of Science, East West Institute of Technology, VTU, Bengaluru-560091, India, Tel.: +91 9886021344 E-mail: scphysics@gmail.com (S.C. Prashantha)

Download English Version:

https://daneshyari.com/en/article/7904284

Download Persian Version:

https://daneshyari.com/article/7904284

Daneshyari.com