ARTICLE IN PRESS

Materials Research Bulletin xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Upconversion luminescence of (Lu,M)NbO₄:Yb³⁺,Er³⁺ (M: Al³⁺, Ga³⁺)

Jieun Park, Young Jin Kim*

Department of Advanced Materials Engineering, Kyonggi University, Suwon 16227, Republic of Korea

ARTICLE INFO

Article history: Received 27 September 2016 Received in revised form 4 December 2016 Accepted 17 January 2017 Available online xxx

Keywords: A. Ceramics A. Optical materials B. Luminescence D. Phosphors

1. Introduction

Niobate compounds doped with some rare-earth (Re) ions (Eu³ ⁺, Sm³⁺, and Tb³⁺) having the form of XNbO₄:Re (X: Y³⁺, La³⁺, Gd³⁺, and Lu³⁺) are well known as optical materials for use in various applications including lasers, solid-state lighting, and X-ray phosphors [1–11]. Among them, YNbO₄:Re has been widely investigated as a downconversion (DC) phosphor [1–5], and the upconversion (UC) luminescence of YNbO₄ co-doped with Yb³⁺ and Er³⁺ (or Tm³⁺) ions was also recently reported [12,13]. However, for LuNbO₄ (LuNO), there are only a few studies of the DC luminescence [9–11].

LuNO has two isomorphs: a monoclinic fergusonite structure (M-fergusonite) at low temperatures and a tetragonal scheelite structure (T-scheelite) at high temperatures. M-fergusonite is also called distorted T-scheelite [14–17]. A Lu atom is coordinated with eight oxygen atoms. A Nb atom is coordinated with four oxygen atoms in a highly distorted tetrahedron, forming a [NbO₄]^{3–} niobate, but, if more nearest-neighbor oxygen atoms are considered, it is six-coordinated in a highly distorted octahedron. When LuNO is doped with Eu³⁺ ions, the photoluminescence (PL) excitation spectra of LuNO:Eu³⁺ consist of a broad band (~268 nm) and sharp peaks in the near-ultraviolet (NUV) region, which originate from self-activated [NbO₄]^{3–} niobates and the f-f transitions of the Eu³⁺ ions, respectively [9,11]. Under NUV radiation, the PL spectra of LuNO:Eu³⁺ exhibit sharp red emission peaks.

http://dx.doi.org/10.1016/j.materresbull.2017.01.027 0025-5408/© 2017 Elsevier Ltd. All rights reserved.

ABSTRACT

The effects of substitution of Al^{3+} and Ga^{3+} ions on the upconversion luminescence of (Lu,M)NbO₄:Yb³⁺, Er³⁺ (M: Al³⁺, Ga³⁺) were studied for the first time. Under infrared (980 nm) radiation, the upconversion spectra consisted of strong green and weak red emission bands, which were assigned to the transition of the ²H_{11/2}/⁴S_{3/2} and ⁴F_{9/2} levels, respectively, to the ground state (⁴I_{15/2}) of the Er³⁺ ions through an energy transfer process from Yb³⁺ to Er³⁺. A two-photon upconversion process was involved in the upconversion emission of (Lu,M)NbO₄:Yb³⁺, Er³⁺. Substitution of Al³⁺ and Ga³⁺ ions increased the green (red) emission intensity to approximately 120% (120%) and 135% (130%), respectively. These behaviors were explained in terms of the crystal field asymmetry and energy transfer probability.

© 2017 Elsevier Ltd. All rights reserved.

It was suggested that Yb³⁺ and Er³⁺ ions can be fully incorporated into the YNbO₄ lattices, resulting in UC luminescence with strong green-emitting bands under near-infrared (NIR, 980 nm) radiation [12,13]. For highly efficient UC, Yb³⁺ and Er³⁺ are typically used as a sensitizer and an activator, respectively. In addition, the DC luminescence of YNbO₄:Eu³⁺ could be greatly enhanced by substitution of Al³⁺ and Ga³⁺ ions [5]. Accordingly, on the basis of a similarity in the crystal structures of YNbO4 and LuNO, it is reasonable to consider that LuNO co-doped with Yb³⁺ and Er^{3+} (LuNO:Yb,Er) can also be an effective UC phosphor. However, to the best of our knowledge, the UC luminescence of LuNO:Yb,Er has not been reported yet, even though the UC luminescence has recently attracted considerable attention because of its high potential for use in many applications [18-25]. In this study, we successfully synthesized LuNO:Yb,Er powders with a single phase of M-fergusonite, and strong UC luminescence could be obtained in the green region. Furthermore, the incorporation of Ga³⁺ and Al³⁺ ions significantly enhanced the UC emission intensity.

2. Experimental

Lu_{1-x}Al_xNbO₄:0.18Yb,0.05Er (LuA_xNO:Yb,Er) and Lu_{1-y}Ga_yN-bO₄:0.18Yb,0.05Er (LuG_yNO:Yb,Er) powders (*x*, *y* = 0–0.2) were synthesized by a conventional solid-state reaction process using Lu₂O₃ (Molycorp, 99.99%), Nb₂O₅ (Kojundo Chemical Lab., 99.9%), Yb₂O₃ (Grand Chemical & Material, 99.99%), Er₂O₃ (Grand Chemical & Material, 99.99%), Er₂O₃ (Grand Chemical Lab., 99.99%), and Ga₂O₃ (Kojundo Chemical Lab., 99.99%) as raw materials. In our preliminary experiment, we found that the LuNO powders co-doped with 0.18Yb³⁺ and 0.05Er³⁺ contained no impurity phases,

^{*} Corresponding author. E-mail address: yjkim@kgu.ac.kr (Y.J. Kim).

2

ARTICLE IN PRESS

J. Park, Y.J. Kim/Materials Research Bulletin xxx (2016) xxx-xxx

and that their UC spectra exhibited strong emission intensities. Starting mixtures with stoichiometric compositions were calcined at 1350 °C for 12 h under nitrogen atmosphere. A flux of 7 wt% LiCl (Sigma-Aldrich, >99.99%) was added to promote the reaction kinetics for the formation of the compounds. An X-ray diffractometer (XRD, Rigaku Miniflex II) using Cu_{Kα} radiation (λ = 1.5406 Å) was used to determine the crystal structure. The UC and DC PL spectra were measured at room temperature using a PL (PSI Darsa-5000) system with an external 200 mW IR laser diode (λ = 980 nm) and a 500 W xenon lamp, respectively.

3. Results and discussion

The XRD patterns of LuA_xNO:Yb,Er and LuG_yNO:Yb,Er powders (x, y=0-0.2) are shown in Fig. 1a and Fig. 1b, respectively. The patterns agree with those of ICSD #98-010-9182. This indicates that the synthesized powders were composed of a LuNO single phase and that the dopant ions (Yb³⁺, Er³⁺, Al³⁺, and Ga³⁺) were fully incorporated into the LuNO lattices. On the basis of the ionic size and valence, it was reasonable to consider that all the dopants were substituted for Lu³⁺ ions. For a coordination number (CN) of eight, Yb³⁺ and Er³⁺ have ionic radii of 0.985 and 1.004 Å, respectively, and can be readily substituted for Lu³⁺ ions (r=0.977 Å). On the other hand, the ionic radii of Al³⁺ and Ga³⁺ for CN = 6 are 0.535 and 0.62 Å, respectively, which are significantly smaller than that of Lu³⁺. As a result, it was inferred that the crystal structure would be modified as Al³⁺ and Ga³⁺ ions replaced Lu³⁺ ions. However, the positions of the XRD peaks of the synthesized powders did not change significantly, as shown in Fig. 1. These findings implied that the dimensions of a unit cell were rarely modified, but that local distortion might occur at the host lattices to permit the inclusion of the much smaller substitutes, Al³⁺ and Ga³⁺ ions. In addition, the intensities of the XRD peaks of the synthesized powders were significantly different from those of the reference (ICSD #98-010-9182). The integrated intensity of each diffraction peak is determined by some factors including the structure, multiplicity, temperature factor, etc. For example, the structure factor mainly depends on the positions of the atoms in the unit cell. Accordingly, the difference in the peak intensity between the synthesized powders and the reference might be attributed to the different atomic positions owing to the distortion of the local structure. A correlation between the local lattice distortion and the UC luminescence will be discussed when the PL spectra are explained. Fig. 2 shows SEM micrographs of the LuA_xNO:Yb,Er and LuG_yNO:Yb,Er powders; the powders consisted

Fig. 1. XRD patterns of (a) $LuA_xNO:Yb,Er$ and (b) $LuG_yNO:Yb,Er$ powders prepared with various amounts of Al (*x*) and Ga (*y*).

of irregular particles. The addition of Al³⁺ or Ga³⁺ did not affect the particle morphologies.

The UC emission spectra of the synthesized powders were measured under 980 nm radiation. Among them, Fig. 3a shows the spectrum of the LuNO:Yb,Er powders; it consists of strong green and weak red emission peaks. The Commission Internationale de l'Eclairage (CIE) chromaticity coordinate (0.3372, 0.6493) lies in the green region because the green peaks had greater emission intensity than the red peaks. The emission peaks originated from the Er³⁺ ions via an energy transfer UC (ETU) process from Yb³⁺ to Er³⁺; the main peaks are assigned to the transitions of the $^2H_{11/2}/^4S_{3/2}$ (526 nm/556 nm) and $^4F_{9/2}$ levels (673 nm) to the ground state $(^4I_{15/2})$ of the Er^{3^+} ions. The Er^{3^+} ions are coordinated with eight oxygen atoms in a distorted cube, leading to large Stark splitting; thus, several additional peaks at 521, 535, 545, and 658 nm are observed, as well as the main emission peaks. To verify the UC mechanism, the emission intensities (I_{em}) at 556 and 673 nm are plotted as functions of the input (excitation) power P on a log-log scale, as shown in Fig. 3b. In the linear region, $I_{\rm em}$ is proportional to P^n , where *n* is the number of photons required for a UC process [19]. The slopes n are 2.01 and 1.84 for the 556 and 673 nm emission, respectively, revealing that a two-photon process is predominantly responsible for the UC emission.

Accordingly, the sequential ETU process between Yb³⁺ and Er³⁺ can be explained using a schematic energy diagram of the twophoton UC process (Fig. 4) as follows [18–20,24]. Under NIR (980 nm) radiation, the Yb³⁺ ions are activated to the excited state (²F_{5/2}), and then the absorbed energy at ²F_{5/2} is transferred to the Er³⁺ ions, leading to two ET processes, *W1* and *W2*, which result in the ⁴I_{15/2} \rightarrow ⁴I_{11/2} (ground-state absorption, GSA) and ⁴I_{11/2} \rightarrow ⁴F_{7/2} (excited-state absorption, ESA) transitions, respectively. Subsequently, nonradiative multiphoton relaxation processes from the ⁴F_{7/2} to ²H_{11/2}, ⁴S_{3/2}, and ⁴F_{9/2} levels of the Er³⁺ ions occur. Finally, the green (526 nm/556 nm) and red emission (673 nm) occur as a result of the transitions of the ²H_{11/2}/⁴S_{3/2} and ⁴F_{9/2} levels, respectively, to the ground state (⁴I_{15/2}) of the Er³⁺ ions. The following route for the red emission is also possible.

(i) Cross-relaxation: ${}^{4}I_{11/2}(Er^{3+}) \rightarrow {}^{4}I_{13/2}(Er^{3+})$ (ii) ET (*W*3): ${}^{4}I_{13/2}(Er^{3+}) + {}^{2}F_{5/2}(Yb^{3+}) \rightarrow {}^{4}F_{9/2}(Er^{3+})$

(iii) Red emission: ${}^{4}F_{9/2}(Er^{3+}) \rightarrow {}^{4}I_{15/2}(Er^{3+})$

For LuNO:Yb,Er, the stronger green emission demonstrated that the excited ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ levels had much higher electron populations than the ${}^{4}F_{9/2}$ level. Detailed explanations are given in earlier reports [18–20,24].

The effects of Al³⁺ and Ga³⁺ substitution on the ETU process of the LuA_xNO:Yb,Er and LuG_yNO:Yb,Er powders are studied. Log-log graphs of *I*_{em} vs. *P* are shown in Fig. 5. The slopes *n* are in the ranges of 2.0-2.9 and 1.75-2.05 for the 556 and 673 nm emission, respectively, indicating that the two-photon process is responsible for the UC emission of the powders. These findings indicate that Al³ ⁺ and Ga³⁺ substitution did not affect the ETU mechanism of LuNO: Yb,Er. The variation of the UC emission intensity is shown in Fig. 6. As x or y increased from 0 to 0.1, the intensity of the green emission (556 nm) gradually increased to approximately 120% and 135% for LuA_xNO:Yb,Er and LuG_yNO:Yb,Er, respectively. In the same way, the intensity of the red emission (673 nm) also increased to approximately 120% and 130% for x = 0 - 0.1 and y = 0 - 0.1, respectively. Thereafter, both the green and red emission intensities decreased for $x \ge 0.1$ and $y \ge 0.1$. The variation of the emission intensity was attributed to modification of the ETU process and the crystal field environment of the Er³⁺ ions. ETU is accomplished through a multistep process consisting mainly of energy transfer, nonradiative relaxation, GSA, ESA, and the electron population of each excited energy level. In addition, the UC emission depends on

Please cite this article in press as: J. Park, Y.J. Kim, Upconversion luminescence of (Lu,M)NbO₄:Yb³⁺,Er³⁺ (M: Al³⁺, Ga³⁺), Mater. Res. Bull. (2017), http://dx.doi.org/10.1016/j.materresbull.2017.01.027

Download English Version:

https://daneshyari.com/en/article/7905212

Download Persian Version:

https://daneshyari.com/article/7905212

Daneshyari.com