FISEVIER

Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Effects of silica coating on the microstructures and energy storage properties of BaTiO₃ ceramics

Yiming Zhang, Minghe Cao*, Zhonghua Yao, Zhijian Wang, Zhe Song, Atta Ullah, Hua Hao, Hanxing Liu

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China

ARTICLE INFO

Article history: Received 25 March 2014 Received in revised form 29 December 2014 Accepted 25 January 2015 Available online 28 January 2015

Keywords: Ceramics Dielectric properties Electrical properties Energy storage

ABSTRACT

We investigated microstructures and energy storage properties of SiO₂-coated BaTiO₃ ceramics that were prepared by the so-called Stöber process. The thickness of coating layer of BaTiO₃ powders could be effectively controlled by the silica content. It could be observed that the secondary phases Ba₂TiSi₂O₈ appeared in the coated BaTiO₃ ceramics due to the interdiffusion reactions between SiO₂ and BaTiO₃ components under sintering. BaTiO₃ cores in the coated ceramics remained up to the original grain size indicating the coating layer as an inhibitor. The results showed that both breakdown strength and energy density were improved apparently. The homogeneity of silica coating in the ceramics should dominate contribution to breakdown strength, which can reduce the weak-point breakdown under high electric field. The optimized composition for BaTiO₃ ceramic coated with 2.0 wt% SiO₂ showed the maximum energy storage density of 1.2 J/cm³ with energy storage efficiency of 53.8%, which is about three times higher than that of pure BaTiO₃ (0.37 J/cm³).

© 2015 Published by Elsevier Ltd.

1. Introduction

Recently, BaTiO₃-based ceramics have been widely used in the electronic ceramic industry due to their excellent dielectric and ferroelectric properties, especially as the use of dielectrics for energy storage capacitors [1–3]. However, new applications for energy storage have been driving the demand for dielectric materials which exhibit high breakdown strength (E_b) while still retaining high polarization in order to obtain high energy density [4]. Theoretically, energy storage density (γ) of the three kinds of dielectric materials (linear dielectrics, ferroelectrics, and antiferroelectrics) can be evaluated from their P–E loops, as given by the following equation [5]:

$$\gamma = \int_{0}^{D_{\text{max}}} E dD \tag{1}$$

where E is the applied electric field and $D_{\rm max}$ is the electric displacement (D) at the highest applied field $(E_{\rm max})$. For the dielectrics with high relative dielectric constant, D can be replaced by the polarization (P). Accordingly, the above formula can be written as follows [5]:

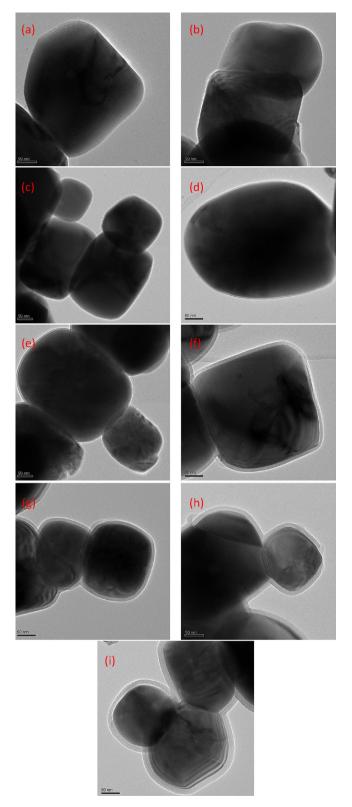
$$\gamma = \int_0^{P_{\text{max}}} E dP = \int_0^{E_{\text{max}}} P dE$$
 (2)

Evidently, based on Eq. (2), the energy storage density of nonlinear dielectrics can be evaluated by integrating the area between the polarization axis and the curves of P-E loops. Obviously, both dielectric breakdown strength and polarization should be the key factors for the contribution of energy density of dielectric materials [6]. Although BaTiO₃ ceramics exhibit a very large polarization, the energy storage values have been very limited due to the large energy loss from hysteresis with large remnant polarization and the relatively low dielectric breakdown strength of ceramics when in the form of sintered pressed disks [7,8].

In order to improve the dielectric breakdown strength, many methods have been adopted, such as controlling grain size [3,9,10], coating/mixing with low-melting point glass to remove the porosity [11–16], and forming new solid solutions with other compounds to reduce the polarization loss [17]. Among these, coating is a simple but effective method and can be operated at ambient temperature. The resultant particles by coating consist of a core made of the base particles and a shell made of coating materials, therefore, known as a core–shell structure. By coating for dielectric materials, the properties of the core component, such as reactivity and dielectric stability, may be modified.

^{*} Corresponding author. Tel.: +86 2787885813; fax: +86 2787885813. E-mail address: caominghe@whut.edu.cn (M. Cao).

SiO₂ has been an effective coating material used in energy storage dielectrics due to high breakdown strength and low dielectric loss. Yu et al. [18,19] have reported the energy storage properties of pure and coated BaTiO₃ homogeneous ceramics-polymer nanocomposites, indicating that the coating of SiO₂ can obviously increase energy storage efficiency of the composites. In the present paper, we fabricate BaTiO₃ nanoparticles in the ethanol/ammonia medium with the successful coating by silica shell of a few nanometers, and investigate the effects of silica coating on the microstructure and electrical properties of coated BaTiO₃ ceramics.


2. Experimental

The selected method was derived from the so-called Stöber process widely used for the synthesis of silica beads from a few tens to a few hundreds of nanometers [20-23]. Here, a series of compositions can be obtained by different silica contents as follows: BaTiO₃ + x wt% SiO₂ (x = 0, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, and 8.0). The silica shell thickness can be tuned by the addition of the amount of tetraethoxysilane (TEOS). BaTiO₃ nanoparticles were purchased from Shandong Guoteng Functional Ceramics Co., Ltd., China. The average size of the BaTiO₃ nanoparticles is \sim 300 nm. The other analytical-reagent starting materials, such as TEOS (≥28.4%), acetic acid (≥99.5%), absolute ethanol, and ammonia water (25–28%), are purchased from Sinopharm Chemical Reagent Co., Ltd., China. It was based on the hydrolysis/condensation of tetraethoxysilane (TEOS) catalyzed by ammonia in alcoholic media. Firstly, the surface of BaTiO₃ nanoparticles was activated by acetic acid treatment. 20 g of BaTiO₃ nanoparticles and 50 ml of absolute ethanol with 3 ml acetic acid were combined in a roundbottomed flask and placed in a water bath (40 °C) with magnetic stirring for 40 min, then sonicated for 30 min. After that, TEOS was added and then redispersed in the same condition. After that, ammonia water was slowly dropped by microburet to form so-called silica-coated BaTiO₃ suspension. The obtained BT nanoparticles were washed with deionized water and then dried at 100 °C for 12 h in the air. The coated BaTiO₃ powders can be obtained. For comparison, the BaTiO₃ + 2.0 wt% SiO₂ composition was prepared by conventional solid-state synthesis (CSSS). Both BaTiO₃ and SiO₂ nanoparticles were selected as starting materials. Pellets of 12 mm in diameter and about 0.5 mm thickness were uniaxially pressed at 200 MPa using 5% PVA binder. Slow heating at 600 °C for 2 h burned out the binder. After de-binding, these pellets were sintered in air at temperature 1250 °C for 2 h by heating rate of 2 °C/min.

The crystalline structures of the sintered samples were examined by X-ray diffraction (XRD, PANalytical X'Pert PRO). The microstructures and thickness of coating can be revealed by scanning electron microscopy (SEM, JSM-5610LV) and transmission electron microscopy (JEM-2100F STEM/EDS) measurements, respectively. For the electrical measurements, the sintered ceramics were smoothed and coated with silver electrodes on both faces. The temperature dependence of dielectric nonlinearity was measured by a precision multi-frequency inductance capacitance resistance analyzer (Agilent E4980A) connected with an automated temperature controller with heating rate of $2 \,^{\circ}$ C/min. The dielectric breakdown strength and P–E hysteresis loop were examined at room temperature using a Radiant precision workstation (Radiant RT66A) based on the Sawyer-Tower circuit at $10\,\text{Hz}$.

3. Results and discussion

The so-called Stöber process was used to fabricate the coated BaTiO₃ powders to form coating layers of a few nanometers. Direct

Fig. 1. TEM pictures of BaTiO₃ nanoparticles coated with different SiO₂ content (a) x = 0; (b) x = 1.0; (c) x = 1.5; (d) x = 2.0; (e) x = 2.5; (f) x = 3.0; (g) x = 4.0; (h) x = 6.0; (i) x = 8.0. Scale bar is 50 nm for all pictures.

evidence of the coating of SiO₂ shell on the BaTiO₃ powder is provided by TEM, as shown in Fig. 1. The continuous and homogeneous coating of BaTiO₃ powder can be obtained with a series of silica thickness from 0.5 nm for 1.0 wt% SiO₂ to 12.0 nm for 8.0 wt% SiO₂, as shown in Table 1.

Download English Version:

https://daneshyari.com/en/article/7905463

Download Persian Version:

https://daneshyari.com/article/7905463

<u>Daneshyari.com</u>